double quantum dot
Recently Published Documents


TOTAL DOCUMENTS

879
(FIVE YEARS 127)

H-INDEX

60
(FIVE YEARS 5)

Author(s):  
Mohammed A. A. Abbas ◽  
Lafy F. Al-Badry ◽  
Amin H. Al-Khursan

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 607
Author(s):  
Jordi Picó-Cortés ◽  
Gloria Platero

Quantum dot-based quantum computation employs extensively the exchange interaction between nearby electronic spins in order to manipulate and couple different qubits. The exchange interaction, however, couples the qubit states to charge noise, which reduces the fidelity of the quantum gates that employ it. The effect of charge noise can be mitigated by working at noise sweetspots in which the sensitivity to charge variations is reduced. In this work we study the response to charge noise of a double quantum dot based qubit in the presence of ac gates, with arbitrary driving amplitudes, applied either to the dot levels or to the tunneling barrier. Tuning with an ac driving allows to manipulate the sign and strength of the exchange interaction as well as its coupling to environmental electric noise. Moreover, we show the possibility of inducing a second-order sweetspot in the resonant spin-triplet qubit in which the dephasing time is significantly increased.


Author(s):  
Arapat Ablimit ◽  
Dildar Hitjan ◽  
Ahmad Abliz

AbstractIn this paper, we study the geometric quantum discord dynamics of the double quantum dot charge qubit in the non-Markovian environment. We apply the non-perturbative non-Markovian quantum state diffusion method to obtain the exact master equation of the double quantum dot system coupled to two independent non-zero temperature electronic baths. Then, we use this master equation to investigate the effects of non-Markovianity, inter-dot coupling strength and bath temperature on the dynamics of geometric quantum discord. Our studies show that the geometric quantum discord of a double quantum dot system can be modified and enhanced in some cases via these factors.


Sign in / Sign up

Export Citation Format

Share Document