Water Gas Shift Reaction Catalyzed by Rhodium–Manganese Oxide Cluster Anions

2021 ◽  
Vol 12 (35) ◽  
pp. 8513-8520
Author(s):  
Jiao-Jiao Chen ◽  
Xiao-Na Li ◽  
Qing-Yu Liu ◽  
Gong-Ping Wei ◽  
Yuan Yang ◽  
...  
1994 ◽  
Vol 23 (8) ◽  
pp. 1391-1394 ◽  
Author(s):  
Ken-ichi Tominaga ◽  
Yoshiyuki Sasaki ◽  
Kohnosuke Hagihara ◽  
Taiki Watanabe ◽  
Masahiro Saito

2020 ◽  
Author(s):  
Nore Stolte ◽  
Junting Yu ◽  
Zixin Chen ◽  
Dimitri A. Sverjensky ◽  
Ding Pan

The water-gas shift reaction is a key reaction in Fischer-Tropsch-type synthesis, which is widely believed to generate hydrocarbons in the deep carbon cycle, but is little known at extreme pressure-temperature conditions found in Earth’s upper mantle. Here, we performed extensive ab initio molecular dynamics simulations and free energy calculations to study the water-gas shift reaction. We found the direct formation of formic acid out of CO and supercritical water at 10∼13 GPa and 1400 K without any catalyst. Contrary to the common assumption that formic acid or formate is an intermediate product, we found that HCOOH is thermodynamically more stable than the products of the water-gas shift reaction above 3 GPa and at 1000∼1400 K. Our study suggests that the water-gas shift reaction may not happen in Earth’s upper mantle, and formic acid or formate may be an important carbon carrier, participating in many geochemical processes in deep Earth.<br>


2013 ◽  
Vol 33 (9) ◽  
pp. 1572-1577 ◽  
Author(s):  
Yuanzhuo ZHANG ◽  
Ziying YU ◽  
Fumin ZHANG ◽  
Qiang XIAO ◽  
Yijun ZHONG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document