Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories

ACS Nano ◽  
2016 ◽  
Vol 10 (5) ◽  
pp. 5326-5332 ◽  
Author(s):  
Yurii P. Ivanov ◽  
Andrey Chuvilin ◽  
Sergei Lopatin ◽  
Jurgen Kosel
2011 ◽  
Vol 79 (4) ◽  
pp. 449-453 ◽  
Author(s):  
Z. Z. Sun ◽  
J. Schliemann ◽  
P. Yan ◽  
X. R. Wang

2012 ◽  
Vol 55 (11) ◽  
pp. 2030-2032 ◽  
Author(s):  
Yong Wu ◽  
XiaoGuang Xu ◽  
DeLin Zhang ◽  
XiaoQi Li ◽  
HaiLing Yang ◽  
...  

2020 ◽  
Vol 125 (24) ◽  
Author(s):  
M. Schöbitz ◽  
A. De Riz ◽  
S. Martin ◽  
S. Bochmann ◽  
C. Thirion ◽  
...  

2010 ◽  
Vol 322 (9-12) ◽  
pp. 1363-1367 ◽  
Author(s):  
Jun’ichi Ieda ◽  
Hiroki Sugishita ◽  
Sadamichi Maekawa

2016 ◽  
Vol 55 (4S) ◽  
pp. 04EN01 ◽  
Author(s):  
Shunsuke Fukami ◽  
Toru Iwabuchi ◽  
Hideo Sato ◽  
Hideo Ohno

Author(s):  
Arseni Goussev ◽  
Ross G. Lund ◽  
J. M. Robbins ◽  
Valeriy Slastikov ◽  
Charles Sonnenberg

We develop a systematic asymptotic description for domain wall motion in one-dimensional magnetic nanowires under the influence of small applied magnetic fields and currents and small material anisotropy. The magnetization dynamics, as governed by the Landau–Lifshitz–Gilbert equation, is investigated via a perturbation expansion. We compute leading-order behaviour, propagation velocities and first-order corrections of both travelling waves and oscillatory solutions, and find bifurcations between these two types of solutions. This treatment provides a sound mathematical foundation for numerous results in the literature obtained through more ad hoc arguments.


Sign in / Sign up

Export Citation Format

Share Document