NMR Relaxation Studies of the Role of Conformational Entropy in Protein Stability and Ligand Binding

2001 ◽  
Vol 34 (5) ◽  
pp. 379-388 ◽  
Author(s):  
Martin J. Stone
2012 ◽  
Vol 40 (2) ◽  
pp. 419-423 ◽  
Author(s):  
Mikael Akke

Protein conformational dynamics can be critical for ligand binding in two ways that relate to kinetics and thermodynamics respectively. First, conformational transitions between different substates can control access to the binding site (kinetics). Secondly, differences between free and ligand-bound states in their conformational fluctuations contribute to the entropy of ligand binding (thermodynamics). In the present paper, I focus on the second topic, summarizing our recent results on the role of conformational entropy in ligand binding to Gal3C (the carbohydrate-recognition domain of galectin-3). NMR relaxation experiments provide a unique probe of conformational entropy by characterizing bond-vector fluctuations at atomic resolution. By monitoring differences between the free and ligand-bound states in their backbone and side chain order parameters, we have estimated the contributions from conformational entropy to the free energy of binding. Overall, the conformational entropy of Gal3C increases upon ligand binding, thereby contributing favourably to the binding affinity. Comparisons with the results from isothermal titration calorimetry indicate that the conformational entropy is comparable in magnitude to the enthalpy of binding. Furthermore, there are significant differences in the dynamic response to binding of different ligands, despite the fact that the protein structure is virtually identical in the different protein–ligand complexes. Thus both affinity and specificity of ligand binding to Gal3C appear to depend in part on subtle differences in the conformational fluctuations that reflect the complex interplay between structure, dynamics and ligand interactions.


2021 ◽  
Author(s):  
José A. Caro ◽  
Kathleen G. Valentine ◽  
A. Joshua Wand

AbstractThe thermodynamics of molecular recognition by proteins is a central determinant of complex biochemistry. For over a half-century detailed cryogenic structures have provided deep insight into the energetic contributions to ligand binding by proteins1. More recently, a dynamical proxy based on NMR-relaxation methods has revealed an unexpected richness in the contributions of conformational entropy to the thermodynamics of ligand binding2,3,4,5. There remains, however, a discomforting absence of an understanding of the structural origins of fast internal motion and the conformational entropy that this motion represents. Here we report the pressure-dependence of fast internal motion within the ribonuclease barnase and its complex with the protein barstar. Distinctive clustering of the pressure sensitivity correlates with the presence of small packing defects or voids surrounding affected side chains. Prompted by this observation, we performed an analysis of the voids surrounding over 2,500 methyl-bearing side chains having experimentally determined order parameters. We find that changes in unoccupied volume as small as a single water molecule surrounding buried side chains greatly affects motion on the subnanosecond timescale. The discovered relationship begins to permit construction of a united view of the relationship between changes in the internal energy, as exposed by detailed structural analysis, and the conformational entropy, as represented by fast internal motion, in the thermodynamics of protein function.


1988 ◽  
Vol 65 (6) ◽  
pp. 964-967 ◽  
Author(s):  
R. Azoury ◽  
J. S. Aronhime ◽  
S. Sarig ◽  
S. Abrashkin ◽  
I. Mayer ◽  
...  

1983 ◽  
Vol 44 (C3) ◽  
pp. C3-1095-C3-1097
Author(s):  
T. Takahashi ◽  
F. Creuzet ◽  
D. Jérôme ◽  
J. M. Fabre

2006 ◽  
Vol 805 (1) ◽  
pp. 585-589 ◽  
Author(s):  
PASCALE GAUDIN ◽  
ALAIN COUVINEAU ◽  
JEAN-JOSÉ MAORET ◽  
CHRISTIANE ROUYER-FESSARD ◽  
MARC LABURTHE

Sign in / Sign up

Export Citation Format

Share Document