Inactivation of rat liver RNA polymerases I and II and yeast RNA polymerase I by pyridoxal 5'-phosphate. Evidence for the participation of lysyl residues at the active site

Biochemistry ◽  
1975 ◽  
Vol 14 (22) ◽  
pp. 4907-4911 ◽  
Author(s):  
Joseph Martial ◽  
Josefina Zaldivar ◽  
Paulina Bull ◽  
Alejandro Venegas ◽  
Pablo Valenzuela
2020 ◽  
Author(s):  
Markus Wahl ◽  
Hao-Hong Pei ◽  
Tarek Hilal ◽  
Zhuo Chen ◽  
Yong-Heng Huang ◽  
...  

Abstract Cellular RNA polymerases can become trapped on DNA or RNA, threatening genome stability and limiting free enzyme pools, or enter dormancy. How RNA polymerase recycling into active states is achieved and balanced with quiescence remains elusive. We structurally analyzed Bacillus subtilis RNA polymerase bound to the NTPase HelD. HelD has two long arms: a Gre cleavage factor-like coiled-coil inserts deep into the RNA polymerase secondary channel, dismantling the active site and displacing RNA; a unique helical protrusion inserts into the main channel, prying β and β’ subunits apart and dislodging DNA, aided by the δ subunit. HelD release depends on ATP, and a dimeric structure resembling hibernating RNA polymerase I suggests that HelD can induce dormancy at low energy levels. Our results reveal an ingenious mechanism by which active RNA polymerase pools are adjusted in response to the nutritional state.


1982 ◽  
Vol 105 (3) ◽  
pp. 799-805 ◽  
Author(s):  
Haruko Yamano ◽  
Yasuko Sawai ◽  
Wen Long Thung ◽  
Fumiyasu Sato ◽  
Kinji Tsukada

1999 ◽  
Vol 19 (1) ◽  
pp. 796-806 ◽  
Author(s):  
Annie-Claude Albert ◽  
Michael Denton ◽  
Milko Kermekchiev ◽  
Craig S. Pikaard

ABSTRACT Mounting evidence suggests that eukaryotic RNA polymerases preassociate with multiple transcription factors in the absence of DNA, forming RNA polymerase holoenzyme complexes. We have purified an apparent RNA polymerase I (Pol I) holoenzyme from Xenopus laevis cells by sequential chromatography on five columns: DEAE-Sepharose, Biorex 70, Sephacryl S300, Mono Q, and DNA-cellulose. Single fractions from every column programmed accurate promoter-dependent transcription. Upon gel filtration chromatography, the Pol I holoenzyme elutes at a position overlapping the peak of Blue Dextran, suggesting a molecular mass in the range of ∼2 MDa. Consistent with its large mass, Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gels reveal approximately 55 proteins in fractions purified to near homogeneity. Western blotting shows that TATA-binding protein precisely copurifies with holoenzyme activity, whereas the abundant Pol I transactivator upstream binding factor does not. Also copurifying with the holoenzyme are casein kinase II and a histone acetyltransferase activity with a substrate preference for histone H3. These results extend to Pol I the suggestion that signal transduction and chromatin-modifying activities are associated with eukaryotic RNA polymerases.


Biochemistry ◽  
2019 ◽  
Vol 58 (16) ◽  
pp. 2116-2124 ◽  
Author(s):  
Catherine E. Scull ◽  
Zachariah M. Ingram ◽  
Aaron L. Lucius ◽  
David A. Schneider

Isozymes ◽  
1975 ◽  
pp. 69-87
Author(s):  
DAVID H. GRIFFIN ◽  
WILLIAM TIMBERLAKE ◽  
JOHN CHENEY ◽  
PAUL A HORGEN

Sign in / Sign up

Export Citation Format

Share Document