Boundary continuity and analytical potentials in continuum solvent models. Implications for the Born model

1987 ◽  
Vol 91 (7) ◽  
pp. 1868-1873 ◽  
Author(s):  
S. Ehrenson
2013 ◽  
Vol 13 (06) ◽  
pp. 1340020
Author(s):  
XIAOCHUAN TANG ◽  
YONG DUAN

The generalized Born (GB) model, one of the implicit solvent models, is widely applied in molecular dynamics (MD) simulations as a simple description of the solvation effect. In the GB model, an empirical function called the Still's formula, with the algorithmic simplicity, is utilized to calculate the solvation energy due to the polarization, termed as ΔG pol . Applications of the GB model have exhibited reasonable accuracy and high computational efficiency. However, there is still room for improvements. Most of the attempts to improve the GB model focus on optimizing effective Born radii. Contrarily, limited researches have been performed to improve the feasibility of the Still's formula. In this paper, analytical methods was applied to investigate the validity of the Still's formula at short distance. Taking advantage of the toroidal coordinates and Mehler–Fock transform, the analytical solutions of the GB model at short distances was derived explicitly for the first time. Additionally, the solvation energy was numerically computed using proper algorithms based on the analytical solutions and compared with ΔG pol calculated in the GB model. With the analysis on the deficiencies of the Still's formula at short distances, potential methods to improve the validity of the GB model were discussed.


2015 ◽  
Vol 11 (10) ◽  
pp. 4593-4600 ◽  
Author(s):  
Robert C. Harris ◽  
B. Montgomery Pettitt

2015 ◽  
Vol 119 (32) ◽  
pp. 8724-8733 ◽  
Author(s):  
Billy W. McCann ◽  
Stuart McFarland ◽  
Orlando Acevedo

Author(s):  
Gantulga Norjmaa ◽  
Gregori Ujaque ◽  
Agustí Lledós

AbstractIn homogeneous catalysis solvent is an inherent part of the catalytic system. As such, it must be considered in the computational modeling. The most common approach to include solvent effects in quantum mechanical calculations is by means of continuum solvent models. When they are properly used, average solvent effects are efficiently captured, mainly those related with solvent polarity. However, neglecting atomistic description of solvent molecules has its limitations, and continuum solvent models all alone cannot be applied to whatever situation. In many cases, inclusion of explicit solvent molecules in the quantum mechanical description of the system is mandatory. The purpose of this article is to highlight through selected examples what are the reasons that urge to go beyond the continuum models to the employment of micro-solvated (cluster-continuum) of fully explicit solvent models, in this way setting the limits of continuum solvent models in computational homogeneous catalysis. These examples showcase that inclusion of solvent molecules in the calculation not only can improve the description of already known mechanisms but can yield new mechanistic views of a reaction. With the aim of systematizing the use of explicit solvent models, after discussing the success and limitations of continuum solvent models, issues related with solvent coordination and solvent dynamics, solvent effects in reactions involving small, charged species, as well as reactions in protic solvents and the role of solvent as reagent itself are successively considered.


2010 ◽  
Vol 114 (51) ◽  
pp. 13442-13444 ◽  
Author(s):  
Junming Ho ◽  
Andreas Klamt ◽  
Michelle L. Coote

Sign in / Sign up

Export Citation Format

Share Document