In-situ measurements of topside ionosphere electron density enhancements during an HF-modification experiment

2011 ◽  
Vol 38 (8) ◽  
pp. n/a-n/a ◽  
Author(s):  
Christopher T. Fallen ◽  
James A. Secan ◽  
Brenton J. Watkins
2021 ◽  
Author(s):  
Fabricio Prol ◽  
Mainul Hoque

<p>In this study, TEC measurements from METOP (Meteorological Operational) satellites are used together with a tomographic algorithm to estimate electron density distributions during geomagnetic storm events. The proposed method is applied during four geomagnetic storms to check the tomographic capabilities for space weather monitoring. The developed method was capable to successfully capture and reconstruct well-known enhancement and decrease of electron density during the geomagnetic storms. The comparison with in-situ electron densities from DMSP (Defense Meteorological Satellite Program) satellites has shown an improvement around 11% and a better plasma description compared to the background. Our study also reveals that the plasmasphere TEC contribution to ground-based TEC may vary 10 to 60% during geomagnetic storms, and the contribution tends to reduce during the storm-recovery phase.</p>


2003 ◽  
Vol 65 (4) ◽  
pp. 417-427 ◽  
Author(s):  
A.D. Danilov ◽  
N.V. Smirnova ◽  
T.A. Blix ◽  
E.V. Thrane ◽  
L.B. Vanina

2020 ◽  
Vol 246 (2) ◽  
pp. 44 ◽  
Author(s):  
Michel Moncuquet ◽  
Nicole Meyer-Vernet ◽  
Karine Issautier ◽  
Marc Pulupa ◽  
J. W. Bonnell ◽  
...  

2019 ◽  
Author(s):  
Michael Stukel ◽  
Thomas Kelly

Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon:thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U-234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.


2013 ◽  
Vol 24 (3) ◽  
pp. 147
Author(s):  
Ming LI ◽  
Qinghua YANG ◽  
Jiechen ZHAO ◽  
Lin ZHANG ◽  
Chunhua LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document