wave structure
Recently Published Documents


TOTAL DOCUMENTS

2047
(FIVE YEARS 384)

H-INDEX

59
(FIVE YEARS 7)

Author(s):  
Prof. M. Senthil Vadivu ◽  
Saranya H ◽  
Vijay Kumar K S

The objective of the project is to improve maternal abdomen recording for better prediction of foetal Electrocardiogram (FECG). One of the most difficult tasks in observing foetal well-being is obtaining a clean foetal Electrocardiogram (FECG) using non-invasive abdominal recordings. The foetal graph's low signal quality, on the other hand, makes morphological examination of its wave structure in clinical follow-up difficult. The signal contains precise information that can help doctors to monitor fetal health during pregnancy and labor. The abdominal signal is normalized and separated in the pre-processing stage for wave shape analysis in clinical follow-up. The Kaiser window is used for spectral analysis and segmenting the signal. The two-dimensional (2D) time-frequency representation is obtained by short-time Fourier transform (STFT). The STFT enhances the abdominal recordings of maternal Electrocardiogram (MECG) for efficient separation of foetal electrocardiogram (FECG) to monitor the foetus well-being.


2021 ◽  
Vol 33 (6) ◽  
pp. 345-356
Author(s):  
Min Su Park

In order to increase the structural stability of existing caisson breakwater, the design and the construction is carried out by installation of new caissons on the back or the front of old caissons. In this study, we use the ANSYS AQWA program to analyze the wave forces acting on individual caisson according to effects of wave structure interaction when new caissons are additionally installed on existing caisson breakwater. Firstly, the wave force characteristics acting on the individual caisson were analyzed for each period (frequency) in the frequency domain. In time domain analysis, the dynamic wave force characteristics were strongly influenced by the distance between caissons on the frequency at which the unusual distribution of wave forces occurs.


Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
John V. Shebalin

We find the analytical form of inertial waves in an incompressible, rotating fluid constrained by concentric inner and outer spherical surfaces with homogeneous boundary conditions on the normal components of velocity and vorticity. These fields are represented by Galerkin expansions whose basis consists of toroidal and poloidal vector functions, i.e., products and curls of products of spherical Bessel functions and vector spherical harmonics. These vector basis functions also satisfy the Helmholtz equation and this has the benefit of providing each basis function with a well-defined wavenumber. Eigenmodes and associated eigenfrequencies are determined for both the ideal and dissipative cases. These eigenmodes are formed from linear combinations of the Galerkin expansion basis functions. The system is truncated to numerically study inertial wave structure, varying the number of eigenmodes. The largest system considered in detail is a 25 eigenmode system and a graphical depiction is presented of the five lowest dissipation eigenmodes, all of which are non-oscillatory. These results may be useful in understanding data produced by numerical simulations of fluid and magnetofluid turbulence in a spherical shell that use a Galerkin, toroidal–poloidal basis as well as qualitative features of liquids confined by a spherical shell.


Author(s):  
Fangcheng Fan

In this paper, we investigate a four-component Toda lattice (TL), which may be used to model the wave propagation in lattices just like the famous TL. By means of the Lax pair and gauge transformation, we construct the [Formula: see text]-fold Darboux transformation (DT), which enables us to obtain multi-soliton or multi-solitary wave solution without complex iterative process. Through the obtained DT, [Formula: see text]-fold explicit exact solutions of the system and their figures with proper parameters are presented from which we find the [Formula: see text]-fold solution shows two-solitary wave structure, the amplitude and shape of the wave change with time. Finally, we derive an infinite number of conservation laws formulaically to illustrate the integrability of the system.


Author(s):  
O. Donmez ◽  
Anwar Al-Kandari ◽  
Ahlam Abu Seedou

There is a special interest to understand the dynamical properties of the accretion disk created around the newly formed black hole due to the supermassive black hole binaries which merge inside the gaseous disk. The newly formed black hole would have a kick velocity up to thousands of km/s that drives a perturbation on a newly accreted torus around the black hole. Some of the observed supermassive black holes at the center of the Active Galactic Nucleus (AGN) move with a certain velocity relative to its broader accretion disk. In this paper, the effects of the kicked black holes onto the infinitesimally thin accreted torus are studied by using the general relativistic hydrodynamical code, focusing on changing the dynamics of the accretion disk during the accretion disk–black hole interaction. We have found that the non-axisymmetric global mode [Formula: see text] inhomogeneity, which causes a spiral-wave-structure, is excited on the torus due to kicked black hole. The higher the perturbation velocity produced by the kicked black hole, the longer the time the torus takes to reach the saturation point. The created spiral density waves which rapidly evolve into the spiral shocks are also observed from the numerical simulations. The spiral shock is responsible for accreting matter toward the black hole. First, the spiral-wave-structure is developed and the accretion through the spiral arms is stopped around the black hole. At the later time of simulation, the formed spiral shocks partly cause the angular momentum loss across the torus.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bing Guan ◽  
Haiyang Yu ◽  
Wei Song ◽  
Jaeho Choi

For the free-space optical (FSO) communication system, the spatial coherence of a laser beam is influenced obviously as it propagates through the atmosphere. This loss of spatial coherence limits the degree to which the laser beam is collimated or focused, resulting in a significant decrease in the power level of optical communication and radar systems. In this work, the analytic expressions of wave structure function for plane and spherical wave propagation through anisotropic non-Kolmogorov turbulence in a horizontal path are derived. Moreover, the new expressions for spatial coherence radius are obtained considering different scales of atmospheric turbulence. Using the newly obtained expressions for the spatial coherent radius, the effects of the inner scales and the outer scales of the turbulence, the power law exponent, and the anisotropic factor are analyzed. The analytical simulation results show that the wave structure functions are greatly influenced by the power law exponent α , the anisotropic factor ζ , the turbulence strength σ ~ R 2 , and the turbulence scales. Moreover, the spatial coherence radiuses are also significantly affected by the anisotropic factor ζ and the turbulence strength σ ~ R 2 , while they are gently influenced by the power law exponent α and the inner scales of the optical waves.


2021 ◽  
Vol 9 (12) ◽  
pp. 1440
Author(s):  
Miguel Uh Zapata ◽  
Damien Pham Van Bang ◽  
Kim Dan Nguyen

The numerical modeling of sediment transport under wave impact is challenging because of the complex nature of the triple wave–structure–sediment interaction. This study presents three-dimensional numerical modeling of sediment scouring due to non-breaking wave impact on a vertical seawall. The Navier–Stokes–Exner equations are approximated to calculate the full evolution of flow fields and morphodynamic responses. The bed erosion model is based on the van Rijn formulation with a mass-conservative sand-slide algorithm. The numerical solution is obtained by using a projection method and a fully implicit second-order unstructured finite-volume method in a σ-coordinate computational domain. This coordinate system is employed to accurately represent the free-surface elevation and sediment/water interface evolution. Experimental results of the velocity field, surface wave motion, and scour hole formation hole are used to compare and demonstrate the proposed numerical method’s capabilities to model the seawall scour.


Author(s):  
Siti Ayishah Thaminah Hikmatullah Sahib ◽  
Muhammad Zahir Ramli ◽  
Muhammad Afiq Azman ◽  
Muhammad Mazmirul Abd Rahman ◽  
Mohd Fuad Miskon ◽  
...  

AbstractIn many cases of wave structure interactions, three-dimensional models are used to demonstrate real-life complex environments in large domain scales. In the seakeeping context, predicting the motion responses in the interaction of a long body resembling a ship structure with regular waves is crucial and can be challenging. In this work, regular waves interacting with a rigid floating structure were simulated using the open-source code based on the weakly compressible smoothed particle hydrodynamics (WCSPH) method, and optimal parameters were suggested for different wave environments. Vertical displacements were computed, and their response amplitude operators (RAOs) were found to be in good agreement with experimental, numerical, and analytical results. Discrepancies of numerical and experimental RAOs tended to increase at low wave frequencies, particularly at amidships and near the bow. In addition, the instantaneous wave contours of the surrounding model were examined to reveal the effects of localized waves along the structure and wave dissipation. The results indicated that the motion response from the WCSPH responds well at the highest frequency range (ω > 5.235 rad/s).


Sign in / Sign up

Export Citation Format

Share Document