scholarly journals Ultramafic Rock Carbonation: Constraints From Listvenite Core BT1B, Oman Drilling Project

Author(s):  
A. Beinlich ◽  
O. Plümper ◽  
E. Boter ◽  
I. A. Müller ◽  
F. Kourim ◽  
...  
2020 ◽  
Author(s):  
Oliver Plümper ◽  
Andreas Beinlich ◽  
Esmée Boter ◽  
Inigo A. Müller ◽  
Fatma Kourim ◽  
...  

<p>The widespread occurrence of the quartz–carbonate alteration assemblage (listvenite) in ophiolites indicates that ultramafic rock represents an effective sink for dissolved CO<sub>2</sub>. However, the understanding of the carbonation mechanisms is almost exclusively based on surface samples, which adds significant uncertainty to the interpretation of fossil hydrothermal systems. Here we present novel insight into the reaction textures and mechanisms of ultramafic rock carbonation obtained from the 300 m deep BT1B drill hole, ICDP Oman Drilling Project. Hole BT1B recovered continuous drill core intersecting surface alluvium, 200 meters of altered ultramafic rock comprising serpentinite and listvenite, and 100meters of the underlying metamorphic sole. The ultramafic part of BT1B is dominated by listvenite with only two thin intercalated serpentinite bands at 90 m and 180 m depth. Microstructural analyses indicate an evolution beginning with non-equilibrium growth of spheroidal carbonate composed of interlayered magnesite and dolomite in the completely serpentinized harzburgite, and magnesite and Ca-magnesite in the listvenite. Carbonate spheroids are characterized by sectorial zoning resulting from radially oriented low-angle boundaries. In the listvenite spheroidal carbonate is overgrown by euhedral magnesite indicative of near-equilibrium growth. Carbonate clumped isotope thermometry indicates carbonate crystallization predominantly between 100°C and 200°C. The strong macroscopic brecciation and veining of listvenite indicate that carbonation was facilitated by significant tectonic deformation allowing for infiltration of reactive fluids over an extended duration.</p>


2019 ◽  
Author(s):  
Andreas Beinlich ◽  
Oliver Plümper ◽  
Esmée Boter ◽  
Inigo Müller ◽  
Fatma Kourim ◽  
...  

Author(s):  
M. Hamzah

Classical Oil Country Tubular Goods (OCTG) procurement approach has been practiced in the indus-try with the typical process of setting a quantity level of tubulars ahead of the drilling project, includ-ing contingencies, and delivery to a storage location close to the drilling site. The total cost of owner-ship for a drilling campaign can be reduced in the range of 10-30% related to tubulars across the en-tire supply chain. In recent decades, the strategy of OCTG supply has seen an improvement resulting in significant cost savings by employing the integrated tubular supply chain management. Such method integrates the demand and supply planning of OCTG of several wells in a drilling project and synergize the infor-mation between the pipes manufacturer and drilling operators to optimize the deliveries, minimizing inventory levels and safety stocks. While the capital cost of carrying the inventory of OCTG can be reduced by avoiding the procurement of substantial volume upfront for the entire project, several hidden costs by carrying this inventory can also be minimized. These include storage costs, maintenance costs, and costs associated to stock obsolescence. Digital technologies also simplify the tasks related to the traceability of the tubulars since the release of the pipes from the manufacturing facility to the rig floor. Health, Safety, and Environmental (HSE) risks associated to pipe movements on the rig can be minimized. Pipe-by-pipe traceability provides pipes’ history and their properties on demand. Digitalization of the process has proven to simplify back end administrative tasks. The paper reviews the OCTG supply methods and lays out tangible improvement factors by employ-ing an alternative scheme as discussed in the paper. It also provides an insight on potential cost savings based on the observed and calculated experiences from several operations in the Asia Pacific region.


Sign in / Sign up

Export Citation Format

Share Document