reactive fluids
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
pp. 1-16
Author(s):  
P. Viswanath ◽  
A. Das ◽  
G. Buscarnera

In fluid-saturated granular materials, the physicochemical interaction between pore-fluids and grain minerals alters packing conditions, which in turn leads to stress change deformation and, in extreme cases, even collapse. Chemical weathering, either naturally occurring or induced by human activities, is among such natural processes. This article presents an experimental study illustrating the major effects of chemical weathering on the deformation and stress state of granular materials, emphasising particulate systems entirely made by highly soluble carbonate grains. Laboratory experiments are conducted by subjecting acidic environments to granular assemblies under oedometric condition. The reaction rate is controlled by regulating various testing parameters, such as acid concentration and pore fluid flow rate. Experiments revealed that the lateral earth pressure steadily reduces in some cases, while others exhibit non-monotonic evolution. From a macroscopic standpoint, the rate of the chemical reaction was critical to determine the emergence of either of these trends. Such findings are relevant for any particulate system in which the stress conditions are controlled by multi-physical processes proceeding at different rates, such as waste products within bioreactors, gouge materials within faults and natural deposits subjected to the injection/extraction of reactive fluids.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7507
Author(s):  
Timotheus K. T. Wolterbeek ◽  
Suzanne J. T. Hangx

Achieving zonal isolation along wellbores is essential for upholding the containment integrity of subsurface reservoirs and preventing fluid seepage to the environment. The sealing performance of Portland cements conventionally used to create barriers can be severely compromised by defects like fractures or micro-annuli along casing–cement–rock interfaces. A possible remediation method would be to circulate reactive fluids through compromised cement sections and induce defect clogging via mineral precipitation. We assess the sealing potential of two prospective fluids: sodium bicarbonate and sodium silicate solutions. Reactive flow-through experiments were conducted on 6-m-long cemented steel tubes, bearing ~20-μm-wide micro-annuli, at 50 °C and 0.3–6 MPa fluid pressure. For the sodium bicarbonate solution (90 g/kg-H2O), reactive flow yielded only a minor reduction in permeability, with values remaining within one order. Injection of sodium silicate solution (37.1 wt.%, SiO2:Na2O molar ratio M= 2.57) resulted in a large decrease in flow rate, effectively reaching the setup’s lower measurement limit in hours. However, this strong sealing effect can almost certainly be attributed to gelation of the fluid through polymerisation, rather than defect clogging via mineral precipitation. For both fluids investigated, the extent of solids precipitation resulting from single-phase injection was less than anticipated. This shortfall is attributed to ineffective/insufficient liberation of Ca-ions from the alkaline phases in the cement.


2021 ◽  
Vol 254 ◽  
pp. 106578
Author(s):  
Tim Wallis ◽  
Philip T. Barton ◽  
Nikolaos Nikiforakis

2021 ◽  
Vol 8 (4) ◽  
pp. 654-664
Author(s):  
Guenoune Rabah ◽  
Soudani Azeddine

The first objective of this numerical research is to help understand the influence of variable density on the structure of turbulence, through the study of a wall jet, and to validate our results with those of the experimental study of A. Soudani. The source of density variation is the mixture between two different non-reactive fluids, with a fixed temperature and pressure. A mass weighted averaging for different variables is applied to the calculation, using ANSYS FLUENT 15.0 commercial software. The principal experience consists of injecting tangentially and alternatively near the wall a gas (air-helium) different from the external flow, through a slot of height 3mm between two plane walls. Such a process permits to provoke an important density difference. The study reaches the conclusion that turbulence is strong, with a slight increase of velocity near the wall and an evident diminution of skin friction, in the case of light fluid injection. The second aim is to estimate the Kolmogorov and large eddies’ scales to construct LES grid to access instant variables in experience.


Author(s):  
Polyneikis Strongylis ◽  
Euripides Papamichos

AbstractThe flow of reactive fluids into porous media, a phenomenon known as reactive infiltration, is important in natural and engineered systems. While most of the studies in this area cover theoretical and experimental analyses in linear acid flow, the present work concentrates on radial flow conditions from a wellbore in the field and on finding exact analytical solutions to moving boundary problems of the uniform dissolution front. Closed-form solutions are obtained for the transient convection–diffusion which allow the demarcation of the range of applicability of the quasi-static limit. The fluid velocity dependency of the diffusion–dispersion coefficient is also examined by comparing results from analytical solutions from constant and velocity-dependent coefficients. These contributions form the basis for linear stability analyses to describe acid fingering encountered in reservoir stimulation.


2021 ◽  
Vol 47 (2) ◽  
pp. 432-441
Author(s):  
Anthony R Hassan ◽  
Olufemi W Lawal ◽  
Funmilayo F Amurawaye

This investigation is to consider the impact of a temperature-dependent variable viscosity of a reactive hydromagnetic Couette fluid flowing within parallel plates. The variable property of the fluid viscosity is thought to be an exponential relation of temperature under the impact of magnetic strength. The differential equations controlling the smooth movement of fluid and energy transfer are modeled and solved by using the series solution of modified Adomian decomposition technique (mADM). The outcomes are shown in tables and graphs for different estimations of thermophysical properties present in the flow regime together with the rate of entropy generation and irreversibility distribution outcome. Keywords: Reactive fluids, Couette Flow, variable viscosity, hydromagnetic and modified Adomian decomposition method (mADM).


Soft Matter ◽  
2021 ◽  
Author(s):  
Lankipalli Harsha ◽  
Tamanna Bhuyan ◽  
Surjendu Maity ◽  
Pranab Kumar Mondal ◽  
Siddhartha Sankar Ghosh ◽  
...  

Self-organized transport and delivery of reactive liquids without spillage or loss of activity have been among the most daunting challenges for long. In this direction, we employ the concept of...


Sign in / Sign up

Export Citation Format

Share Document