tectonic deformation
Recently Published Documents


TOTAL DOCUMENTS

538
(FIVE YEARS 206)

H-INDEX

39
(FIVE YEARS 6)

Author(s):  
Chuanyong Wu ◽  
Guangxue Ren ◽  
Siyu Wang ◽  
Xue Yang ◽  
Gan Chen ◽  
...  

The deformation pattern and slip partitioning related to oblique underthrusting of the Tarim Basin in the eastern Tian Shan orogenic belt are not well understood because interior deformation images are lacking. The Baoertu fault is an E-W−striking, ∼350-km-long reactivated basement structure within the eastern Tian Shan. In this study, we quantify its late Quaternary activity based on interpretations of detailed high-resolution remote sensing images and field investigations. Three field observation sites along an ∼80-km-long fault segment indicate that the Baoertu fault is characterized by sinistral thrust faulting. Based on surveying of the displaced geomorphic surfaces with an unmanned drone and dating of the late Quaternary sediments using radiocarbon and optically stimulated luminescence (OSL) methods, we estimate a late Quaternary left-lateral, strike-slip rate of 1.87 ± 0.29 mm/yr and a N−S shortening rate of 0.26 ± 0.04 mm/yr for this fault. The lithospheric Baoertu fault acts as a decoupling zone and accommodates the left-lateral shearing caused by the oblique underthrusting of the Tarim Basin. In the eastern Tian Shan orogenic belt, the oblique convergence is partitioned into thrust faulting across the entire range and sinistral slip faulting on the high-dip basement structure within the orogen. This active faulting pattern in the eastern Tian Shan of sinistral shearing in the center and thrust faulting on both sides can be viewed as giant, crustal-scale positive flower structures.


2021 ◽  
Vol 51 (4) ◽  
pp. 391-402
Author(s):  
Gyula MENTES ◽  
Ladislav BRIMICH ◽  
Martin BEDNÁRIK ◽  
Jozef BÓDI

Two extensometer stations have been set up at the margin of the Pannonian Basin to monitor tectonic movements as well as Earth tides and related phenomena. Because the Sopronbánfalva Geodynamic Observatory (SGO) in Hungary and the Vyhne Tidal Station (VTS) in Slovakia are located in different geological, topographic, and tectonic environments, the analysis and comparison of the extensometer data measured here provides a useful opportunity to interpret the observed data. The tectonic deformation at the SGO shows an average contraction of: −2.94 μstr y−1 (1 μstr is 10−6 relative deformation) which can be explained by the uplift of the Alps and the anticlockwise motion of the Adria microplate, causing compression in the Eastern Alps. At the VTS an average compression of −14.8 nstr y−1 (1 nstr is 10−9 relative deformation) was measured which can be explained by the NW compression direction in this area. The measured deformations in both observatories show a good agreement with the results of GPS measurements. The deformation at the VTS is characterized by small dilatation anomalies caused by the different topographic, tectonic environment and probably by the high heat flow in the area of the station. At this station the calculated amplitude factors for O1, P1, K1, M2 are 1.01482, 1.21691, 0.83173, 1.09392 and the ocean load corrected values are 1.10817, 1.35717, 0.92809, 1.28812, respectively. At the SGO the calculated amplitude factors for the same tidal components are 0.58776, 0.38967, 0.41548, 1.00564 and the ocean load corrected values are 0.98893, 1.89117, 1.00430, 1.04962, respectively. These results show that the effect of the ocean tide loading is greater at Sopronbánfalva, than at Vyhne. Based on the comparison, we can say that the result of the local strain measurement can be considered realistic.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lihao Chen ◽  
Chunhui Song ◽  
Yadong Wang ◽  
Xiaomin Fang ◽  
Yihu Zhang ◽  
...  

The Qilian Shan, which is located along the northeastern margin of the Tibetan Plateau, plays a key role in understanding the dynamics of the outward and upward growth of the plateau. However, when and how tectonic deformation evolved into the geographic pattern which is currently observed in the Qilian Shan are still ambiguous. Here, apatite fission track (AFT) thermochronology and sedimentology were conducted to interpret the low-temperature tectonic deformation/exhumation events in well-dated Late Miocene synorogenic sediment sequences in the Xining Basin, which is adjacent to the southern flank of the Qilian Shan. These new low-temperature thermochronological results suggest that the Qilian Shan experienced four stages of tectonic exhumation during the late Mesozoic–Cenozoic. The Late Cretaceous exhumation events in the Qilian Shan were caused by the diachronous Mesozoic convergence of the Asian Plate and Lhasa Block. In the early Cenozoic (ca. 68–48 Ma), the Qilian Shan quasi-synchronously responded to the Indian–Asian plate collision. Subsequently, the mountain range experienced a two-phase deformation during the Eocene–Early Miocene due to the distal effects of ongoing India–Asia plate convergence. At ca. 8 ± 1 Ma, the Qilian Shan underwent dramatic geomorphological deformation, which marked a change in subsidence along the northeastern margin of the Tibetan Plateau at that time. Our findings suggest that the paleogeographic pattern in the northeastern Tibetan Plateau was affected by the pervasive suture zones in the entire Qilian Shan, in which the pre-Cenozoic and Indian–Asian plate motions reactivated the transpressional faults which strongly modulated the multiperiodic tectonic deformation in northern Tibet during the Cenozoic. These observations provide new evidence for understanding the dynamic mechanisms of the uplift and expansion of the Tibetan Plateau.


2021 ◽  
Vol 151 (3) ◽  
pp. 235-252
Author(s):  
Krisztina Sebe ◽  
Gyula Konrád ◽  
Orsolya Sztanó

The Pécs-Danitzpuszta sand pit is the most important outcrop of the oldest Pannonian (upper Miocene, Tortonian) deposits in southern Hungary. A trench excavated in 2018 exposed Lake Pannon deposits and underlying Paratethys strata down to the upper Badenian (Serravallian), and together with the sand pit they make up a continuous sedimentary succession with a true thickness of ~220 metres. Due to tectonic deformation, middle Miocene deposits and carbonates in the lowermost Pannonian are overturned. Layers become vertical close to the marl-sand boundary, then the dip changes to normal, with continuously decreasing dip angles. The exposed succession starts with 5 m of upper Badenian (13.8-12.6 Ma old) calcareous marls and sandy limestones with sublittoral, then littoral molluscs, which were deposited in the normal salinity seawaters of the Central Paratethys. The overlying 8 m of sand, silt, sandy breccia and conglomerate are fossil-free,; only the lowermost silt layer contains reworked Badenian microfauna. This unit probably accumulated from gravity-driven flows in a fan-like, probably terrestrial depositional setting. The next 7.5 m of frequently alternating thin-bedded limestones, marls and clays with sublittoral biota represent rapid transgression. Foraminifers, ostracods, molluscs and calcareous nannoplankton indicate late Sarmatian, then Pannonian age for this interval. However, the locations of the boundaries indicated by the various groups are not are not consistent, making the position of the Sarmatian/Pannonian boundary uncertain. The Sarmatian beds with marine fossils still accumulated in the Paratethys, between ~12.1–11.6 Ma, under varying salinities due among others to temporary freshwater input. The Pannonian strata already represent sediments of the brackish Lake Pannon. Above these beds, uniform calcareous marl becomes dominant with some clay layers and graded or structureless conglomerate to sandstone interbeds. The deposition of the overall 64- m- thick Pannonian calcareous marl section took place in the open, probably few -hundred -metres -deep water of the lake between ~11.62 and 10.5–10.2 Ma. It may represent a rare, well-exposed surface occurrence of the Endrőd Formation which is known from thousands of wells in the Pannonian Basin. Above this section, a 6-7 -m- thick transitional interval of silty marls and sands is followed by ~140 m of limonitic, pebbly sands. They have poor to moderate sorting and rounding, metre -thick beds with transitional boundaries and abundant fossils and clasts reworked from older Miocene units. Their accumulation took place between 10.2-10.5 and 9.6 Ma by gravity flows connected to deep-water portions of fan deltas.


2021 ◽  
Vol 112 ◽  
pp. 103556
Author(s):  
Marcus Vinícius Fonseca Santini Tavares ◽  
Emílio Velloso Barroso ◽  
Anderson Moraes ◽  
Aline Theophilo Silva

Author(s):  
Beau Whitney ◽  
James Hengesh ◽  
Dan Clark

Sandstrom et al. (2020) present new elevation and age data for a flight of four marine terraces preserved along the western limb of the Cape Range anticline in western Australia. Their interpretation of these data provides an alternative estimate for the amount of tectonic deformation that has occurred since terrace formation. They conclude that less tectonic uplift has occurred in the region than previously reported and posit that their study provides a template for reducing the uncertainty associated with last interglacial paleoshoreline reconstructions.


2021 ◽  
Author(s):  
◽  
James McClintock

<p>The Glenburn Formation of the East Coast of New Zealand is a Late Cretaceous sedimentary formation consisting of alternating layers of sandstone, mudstone and conglomerate. The Glenburn Formation spans a depositional timeframe of over 10 Ma, is over 1000 m thick, is regionally extensive and is possibly present over large areas offshore. For these reasons, it is important to constrain the paleoenvironment of this unit.  Late Cretaceous paleogeographic reconstructions of the East Coast Basin are, however, hampered by a number of factors, including the pervasive Neogene to modern tectonic deformation of the region, the poorly understood nature of the plate tectonic regime during the Cretaceous, and a lack of detailed sedimentological studies of most of the region’s Cretaceous units. Through detailed mapping of the Glenburn Formation, this study aims to improve inferences of regional Cretaceous depositional environments and paleogeography.  Detailed facies based analysis was undertaken on several measured sections in eastern Wairarapa and southern Hawke’s Bay. Information such as bed thickness, grain size and sedimentary structures were recorded in order to identify distinct facies. Although outcrop is locally extensive, separate outcrop localities generally lie in different thrust blocks, which complicates comparisons of individual field areas and prevents construction of the large-scale, three-dimensional geometry of the Glenburn Formation.  Glenburn Formation consists of facies deposited by sediment gravity flows that were primarily turbidity currents and debris flows. Facies observed are consistent with deposition on a prograding submarine fan system. There is significant variation in facies both within and between sections. Several distinct submarine fan architectural components are recognised, such as fan fringes, fan lobes, submarine channels and overbank deposits. Provenance and paleocurrent indicators are consistent with deposition having occurred on several separate submarine fans, and an integrated regional paleogeographic reconstruction suggests that deposition most likely occurred in a fossil trench following the mid-Cretaceous cessation of subduction along the Pacific-facing margin of Gondwana.</p>


2021 ◽  
Author(s):  
◽  
James McClintock

<p>The Glenburn Formation of the East Coast of New Zealand is a Late Cretaceous sedimentary formation consisting of alternating layers of sandstone, mudstone and conglomerate. The Glenburn Formation spans a depositional timeframe of over 10 Ma, is over 1000 m thick, is regionally extensive and is possibly present over large areas offshore. For these reasons, it is important to constrain the paleoenvironment of this unit.  Late Cretaceous paleogeographic reconstructions of the East Coast Basin are, however, hampered by a number of factors, including the pervasive Neogene to modern tectonic deformation of the region, the poorly understood nature of the plate tectonic regime during the Cretaceous, and a lack of detailed sedimentological studies of most of the region’s Cretaceous units. Through detailed mapping of the Glenburn Formation, this study aims to improve inferences of regional Cretaceous depositional environments and paleogeography.  Detailed facies based analysis was undertaken on several measured sections in eastern Wairarapa and southern Hawke’s Bay. Information such as bed thickness, grain size and sedimentary structures were recorded in order to identify distinct facies. Although outcrop is locally extensive, separate outcrop localities generally lie in different thrust blocks, which complicates comparisons of individual field areas and prevents construction of the large-scale, three-dimensional geometry of the Glenburn Formation.  Glenburn Formation consists of facies deposited by sediment gravity flows that were primarily turbidity currents and debris flows. Facies observed are consistent with deposition on a prograding submarine fan system. There is significant variation in facies both within and between sections. Several distinct submarine fan architectural components are recognised, such as fan fringes, fan lobes, submarine channels and overbank deposits. Provenance and paleocurrent indicators are consistent with deposition having occurred on several separate submarine fans, and an integrated regional paleogeographic reconstruction suggests that deposition most likely occurred in a fossil trench following the mid-Cretaceous cessation of subduction along the Pacific-facing margin of Gondwana.</p>


2021 ◽  
Author(s):  
Francesco Pintori ◽  
Enrico Serpelloni ◽  
Adriano Gualandi

Abstract. We study time series of vertical ground displacements from continuous GNSS stations to investigate the spatial and temporal contribution of different geophysical processes to the time-varying displacements that are superimposed on vertical linear trends across the European Alps. We apply a multivariate statistics-based blind source separation algorithm to both GNSS displacement time series and to ground displacements associated with atmospheric and hydrological loading processes, as obtained from global reanalysis models. This allows us to associate each retrieved geodetic vertical deformation signal with a corresponding forcing process. Atmospheric loading is the most important one, reaching amplitudes larger than 2 cm. Besides atmospheric loading, seasonal displacements with amplitudes of about 1 cm are associated with temperature-related processes and with hydrological loading. We find that both temperature and hydrological loading cause peculiar spatial features of GNSS ground displacements. For example, temperature-related seasonal displacements show different behaviour at sites in the plains and in the mountains. Atmospheric and hydrological loading, besides the first-order spatially uniform feature, are associated also with NS and EW displacement gradients. We filter out signals associated with non-tectonic deformation from the raw time series to study their impact on both the estimated noise and linear rates in the vertical direction. While the impact on rates appears rather limited, given also the long-time span of the time-series considered in this work, the uncertainties estimated from filtered time-series assuming a power law + white noise model are significantly reduced, with an important increase in white noise contributions to the total noise budget. Finally, we present the filtered velocity field and show how vertical ground velocities are positively correlated with topographic features of the Alps.


2021 ◽  
Author(s):  
◽  
Clifford Barrie Atkins

<p>Linear abrasion features on rock surfaces are produced by interacting rock particles in relative motion. The most common examples are striae produced by temperate glaciers, and as a consequence, striae have long been used as a means of identifying the passage of past glaciers. However, there are many non-glacial processes that can produce striae. These have been sporadically documented in the geological literature but have failed to make a lasting impression on the wider Earth Sciences community. These non-glacial processes include tectonic deformation, meltwater flow, non-glacial ice, wind action, volcanic blasting, mass movements of rock debris, among many others. Many produce coarse-grained deposits similar in character to glacial tills and there are several instances where non-glacial deposits and striae have been misinterpreted as glacial in origin. This thesis examines linear abrasion features (mostly striae) from five different environments, three glacial (temperate, polythermal and cold) and two non-glacial environments (mass movement and tectonic) to characterise the striae from different origins. The aim was to assess if there are readily observable and measurable differences in striae character between environments and to develop field-based criteria that allow a sound judgement of their origin in the geological record. Over 760 measurements of individual striae were made (orientation and size) on around 20 representative clasts and characteristic features of about 50 striated clasts from the various environments are illustrated in an "Atlas of linear abrasion features". In addition clast shape and striae occurrence were measured on 1260 clasts from deposits and about 100 bedrock linear abrasions from a cold-based glacier were recorded. The results show that some striae are diagnostic of certain environments but a combination of clast shape and striae characteristics is the most reliable method of correctly interpreting coarse-grained deposits with striated clasts. Results also highlight the wide range of striae characteristics within each environment and the importance of lithology in striae generation. This is evident even within the well-known temperate glacial environment where there is a marked contrast between striae formed within a thick debris layer and those formed in thin debris-rich basal ice. There appears to be little difference in striae formed by temperate and polyhermal glaciers, but glacial striae are readily distinguishable from striae found in various mass movement deposits or tectonically deformed conglomerates. Glacial striae tend to be sub-parallel to the clast long axes and show a high density on individual surfaces, whereas those in non-glacial origin typically show a lower density of slightly shorter, wider striae and show either no preferred orientation or weak grouping. The survivability of glacial abrasion features of clasts once they have entered a fluvial system has been assessed in a small South Island glacier fed river. This has provided a basis for estimating the proximity of a glaciofluvial deposit to the glacier front. Striae are found to survive only 1 to 2 km and glacial facets are mostly removed within 6 km. The study has also documented previously undescribed linear abrasion features from a cold-based glacier in Antarctica. This discovery is a significant advance in understanding cold glacial processes, and has provided new criteria for recognising the passage of cold-based glaciers in polar areas or regions where cold-based ice may have existed in the past.</p>


Sign in / Sign up

Export Citation Format

Share Document