scholarly journals Electron Heat Flux in the Solar Wind: Generalized Approaches to Fluid Transport with a Variety of Skewed Velocity Distributions

Author(s):  
Steven R. Cranmer ◽  
Avery J. Schiff
1999 ◽  
Vol 26 (14) ◽  
pp. 2129-2132 ◽  
Author(s):  
Earl E. Scime ◽  
Allen E. Badeau ◽  
J. E. Littleton
Keyword(s):  

1994 ◽  
Vol 99 (A12) ◽  
pp. 23401 ◽  
Author(s):  
Earl E. Scime ◽  
Samuel J. Bame ◽  
William C. Feldman ◽  
S. Peter Gary ◽  
John L. Phillips ◽  
...  

2022 ◽  
Author(s):  
Manuel Scotto d'Abusco ◽  
Giorgio Giorgiani ◽  
Jean-Francois Artaud ◽  
Hugo Bufferand ◽  
Guido Ciraolo ◽  
...  

Abstract In the present work we investigate for the first time the 2D fluid transport of the plasma in WEST during an entire discharge from the start-up to the ramp-down (shot #54487). The evolution of density profile, electron and ion temperatures together with the experimental magnetic equilibrium, total current and gas-puff rate is investigated. Comparisons with the interferometry diagnostic show a remarkable overall qualitative agreement during the discharge that can be quantitative at some locations in the plasma core. If at the onset of the X-points during the ramp-up the electron heat flux is dominant at the target, present results show that the ion heat flux becomes dominant during the stationary phase of the discharge. Using a simple model for erosion, present results assess the tungsten sputtering due to deuterium ions during the start-up and ramp-up phases of the discharge and confirms the need to consider full discharge simulation to accurately treat the W source of contamination. This work also demonstrates the interest of developing magnetic equilibrium free solver including efficient time integration to step toward predictive capabilities in the future for fusion operation.


1999 ◽  
Vol 6 (6) ◽  
pp. 2607-2612 ◽  
Author(s):  
S. Peter Gary ◽  
Ruth M. Skoug ◽  
William Daughton
Keyword(s):  

1986 ◽  
Vol 91 (A10) ◽  
pp. 11352 ◽  
Author(s):  
J. T. Gosling ◽  
D. N. Baker ◽  
S. J. Bame ◽  
R. D. Zwickl

2021 ◽  
Author(s):  
Bea Zenteno-Quinteros ◽  
Adolfo F. Viñas ◽  
Pablo S. Moya

<p>Electron velocity distributions in the solar wind are known to have field-aligned skewness, which has been observationally characterized by the presence of secondary populations such as the halo and strahl electron components. This non-thermal feature provides energy for the excitation of electromagnetic instabilities that may play a role in regulating the electron heat flux in the solar wind by wave-particle interactions. Among the wave modes excited in regulating the electron non-thermal features is the whistler-mode and its so-called whistler heat-flux instability (WHFI). In this work, we use kinetic linear theory to analyze the stability of the WHFI in a solar wind like plasma where the electrons are described as a single population modeled by a Kappa distribution to which an asymmetry term has been added. We solve the dispersion relation numerically for the parallel propagating whistler-mode and study its linear stability for different plasma parameters. We also show the marginal stability thresholds for this instability as a function of the electron beta and the parallel electron heat flux and present a threshold condition for instability that can be modeled to compare with observational data. The principal result is that the WHFI can develop in this system; however, the heat flux parameter is not a good predictor of how unstable this wave mode will be. This is because different plasma states, with different stability to WHFI, can have the same initial heat flux. Thus, systems with high <img title="This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program." src="https://latex.codecogs.com/gif.latex?q_%7B%5Cparallel%20e%7D/q_0"> can be stable enough to WHFI so that it cannot effectively modify the heat flux values through wave-particle interactions</p>


2020 ◽  
Author(s):  
Ilya Kuzichev ◽  
Ivan Vasko ◽  
Angel Rualdo Soto-Chavez ◽  
Anton Artemyev

<p>The electron heat flux is one of the leading terms in energy flow processes in the collisionless or weakly-collisional solar wind plasma. The very first observations demonstrated that the collisional Spitzer-HÓ“rm law could not describe the heat flux in the solar wind well. In particular, in-situ observations at 1AU showed that the heat flux was suppressed below the collisional value. Different mechanisms of the heat flux regulation in the solar wind were proposed. One of these possible mechanisms is the wave-particle interaction with whistler-mode waves produced by the so-called whistler heat flux instability (WHFI). This instability operates in plasmas with at least two counter-streaming electron populations. Recent observations indicated that the WHFI operates in the solar wind producing predominantly quasi-parallel whistler waves with the amplitudes up to several percent of the background magnetic field. But whether such whistler waves can regulate the heat flux still remained an open question.</p><p>We present the results of simulation of the whistler generation and nonlinear evolution using the 1D full Particle-in-Cell code TRISTAN-MP. This code models self-consistent dynamics of ions and two counter-streaming electron populations:  warm (core) electrons and hot (halo) electrons. We performed two sets of simulations. In the first set, we studied the wave generation for the classical WHFI, so both core and halo electron distributions were taken to be isotropic. We found a positive correlation between the plasma beta and the saturated wave amplitude. For the heat flux, the correlation changes from positive to a negative one at some value of the heat flux. The observed wave amplitudes and correlations are consistent with the observations. Our calculations show that the electron heat flux does not change substantially in the course of the WHFI development; hence such waves are unlikely to contribute significantly to the heat flux regulation in the solar wind.</p><p>The classical WHFI drives only those whistler waves that propagate along the halo electron drift direction (consequently, parallel with respect to background magnetic field). Such waves interact resonantly with electrons that move in the opposite direction; hence, only a relatively small fraction of hot halo electrons is affected by these waves. On the contrary, anti-parallel whistler waves would interact with a substantial fraction of halo electrons. Thus, they could influence the heat flux more significantly. To test this hypothesis, we performed the second set of simulations with anisotropic halo electrons. Anisotropic distribution drives both parallel and anti-parallel waves. Our calculations demonstrate that anti-parallel whistler waves can decrease the heat flux. This indicates that the waves generated via combined whistler anisotropy and heat flux instabilities might contribute to regulation of the heat flux in the solar wind.</p><p>The work was supported by NSF grant 1502923. I. Kuzichev would also like to acknowledge the support of the RBSPICE Instrument project by JHU/APL sub-contract 937836 to the New Jersey Institute of Technology under NASA Prime contract NAS5-01072. Computational facility: Cheyenne supercomputer (doi:10.5065/D6RX99HX) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by NSF</p>


1975 ◽  
Vol 2 (3) ◽  
pp. 79-82 ◽  
Author(s):  
S. Peter Gary ◽  
W. C. Feldman ◽  
D. W. Forslund ◽  
M. D. Montgomery
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document