Supplemental Material for Fast Perception of Binocular Disparity

Keyword(s):  
2021 ◽  
Author(s):  
Ryan Edward O'Donnell ◽  
Kyrie Murawski ◽  
Ella Herrmann ◽  
Jesse Wisch ◽  
Garrett D. Sullivan ◽  
...  

There have been conflicting findings on the degree to which exogenous/reflexive visual attention is selective for depth, and this issue has important implications for attention models. Previous findings have attempted to find depth-based cueing effects on such attention using reaction time measures for stimuli presented in stereo goggles with a display screen. Results stemming from such approaches have been mixed, depending on whether target/distractor discrimination was required. To help clarify the existence of such depth effects, we have developed a paradigm that measures accuracy rather than reaction time in an immersive virtual-reality environment, providing a more appropriate context of depth. Four modified Posner Cueing paradigms were run to test for depth-specific attentional selectivity. Participants fixated a cross while attempting to identify a rapidly masked letter that was preceded by a cue that could be valid in depth and side, depth only, or side only. In Experiment 1, a potent cueing effect was found for side validity and a weak effect was found for depth. Experiment 2 controlled for differences in cue and target sizes when presented at different depths, which caused the depth validity effect to disappear entirely even though participants were explicitly asked to report depth and the difference in virtual depth was extreme (20 vs 300 meters). Experiments 3a and 3b brought the front depth plane even closer (1 m) to maximize effects of binocular disparity, but no reliable depth cueing validity was observed. Thus, it seems that rapid/exogenous attention pancakes 3-dimensional space into a 2-dimensional reference frame.


1997 ◽  
Vol 77 (6) ◽  
pp. 2879-2909 ◽  
Author(s):  
Izumi Ohzawa ◽  
Gregory C. Deangelis ◽  
Ralph D. Freeman

Ohzawa, Izumi, Gregory C. DeAngelis, and Ralph D. Freeman. Encoding of binocular disparity by complex cells in the cat's visual cortex. J. Neurophysiol. 77: 2879–2909, 1997. To examine the roles that complex cells play in stereopsis, we have recorded extracellularly from isolated single neurons in the striate cortex of anesthetized paralyzed cats. We measured binocular responses of complex cells using a comprehensive stimulus set that encompasses all possible combinations of positions over the receptive fields for the two eyes. For a given position combination, stimulus contrast could be the same for the two eyes (2 bright or 2 dark bars) or opposite (1 bright and 1 dark). These measurements provide a binocular receptive field (RF) profile that completely characterizes complex cell responses in a joint domain of left and right stimulus positions. Complex cells typically exhibit a strong selectivity for binocular disparity, but are only broadly selective for stimulus position. For most cells, selectivity for disparity is more than twice as narrow as that for position. These characteristics are highly desirable if we assume that a disparity sensor should exhibit position invariance while encoding small changes in stimulus depth. Complex cells have nearly identical binocular RFs for bright and dark stimuli as long as the sign of stimulus contrast is the same for the two eyes. When stimulus contrast is opposite, the binocular RF also is inverted such that excitatory subregions become suppressive. We have developed a disparity energy model that accounts for the behavior of disparity-sensitive complex cells. This is a hierarchical model that incorporates specific constraints on the selection of simple cells from which a complex cell receives input. Experimental data are used to examine quantitatively predictions of the model. Responses of complex cells generally agree well with predictions of the disparity energy model. However, various types of deviations from the predictions also are found, including a highly elongated excitatory region beyond that supported by a single energy mechanism. Complex cells in the visual cortex appear to provide a next level of abstraction in encoding information for stereopsis based on the activity of a group of simple-type subunits. In addition to exhibiting narrow disparity tuning and position invariance, these cells seem to provide a partial solution to the stereo correspondence problem that arises in complex natural scenes. Based on their binocular response properties, these cells provide a substantial reduction in the complexity of the correspondence problem.


2005 ◽  
Vol 93 (4) ◽  
pp. 1823-1826 ◽  
Author(s):  
Peter Neri

Three recent studies offer new insights into the way visual cortex handles binocular disparity signals. Two of these studies recorded from single neurons in two different visual areas of the monkey brain, one (V5/MT) in dorsal and one (V4) in ventral cortex. While V5/MT neurons respond similarly to neurons in primary visual cortex (V1), V4 neurons appear to reflect a more advanced stage in the analysis of retinal disparity, closer to the perceptual experience of stereoscopic depth. Both studies are consistent with a third study using fMRI to address similar questions in humans. Together with previous evidence, these results suggest a new framework for understanding stereoscopic processing based on the separation between ventral and dorsal streams in visual cortex.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Henry Railo ◽  
Joni Saastamoinen ◽  
Sipi Kylmälä ◽  
Aapo Peltola

Sign in / Sign up

Export Citation Format

Share Document