scholarly journals A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Yunan Luo ◽  
Xinbin Zhao ◽  
Jingtian Zhou ◽  
Jinglin Yang ◽  
Yanqing Zhang ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Zheng ◽  
Zheng Wu

Drug repositioning is a method of systematically identifying potential molecular targets that known drugs may act on. Compared with traditional methods, drug repositioning has been extensively studied due to the development of multi-omics technology and system biology methods. Because of its biological network properties, it is possible to apply machine learning related algorithms for prediction. Based on various heterogeneous network model, this paper proposes a method named THNCDF for predicting drug–target interactions. Various heterogeneous networks are integrated to build a tripartite network, and similarity calculation methods are used to obtain similarity matrix. Then, the cascade deep forest method is used to make prediction. Results indicate that THNCDF outperforms the previously reported methods based on the 10-fold cross-validation on the benchmark data sets proposed by Y. Yamanishi. The area under Precision Recall curve (AUPR) value on the Enzyme, GPCR, Ion Channel, and Nuclear Receptor data sets is 0.988, 0.980, 0.938, and 0.906 separately. The experimental results well illustrate the feasibility of this method.


Drugs, also known as medicines cure diseases by interacting with some specific targets such as proteins and nucleic acid. Prediction of such drug-target interaction pairs plays a major role in drug discovery. It helps to identify the side effects caused by various drugs and provide a way to analyze the chances of usage of one drug for various diseases apart from the one disease that is predefined for that drug. However, existing Drug Target Interaction prediction methods are very expensive and time consuming. In this work, we present a new method to predict such interactions with the help of bipartite graph, which represents the known drug target interaction pairs. Information about drug and target are collected from various sources and they are integrated using Kronecker Regularized Least Square approach and Multiple Kernel Learning method, to generate drug and target similarity matrices. By integrating the two similarity matrices and known DTIs a heterogeneous network is constructed and new DTI predictions are done by performing Bi Random walk in it


Author(s):  
Ali Ezzat ◽  
Peilin Zhao ◽  
Min Wu ◽  
Xiao-Li Li ◽  
Chee-Keong Kwoh

Sign in / Sign up

Export Citation Format

Share Document