scholarly journals Optical spin locking of a solid-state qubit

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
J. H. Bodey ◽  
R. Stockill ◽  
E. V. Denning ◽  
D. A. Gangloff ◽  
G. Éthier-Majcher ◽  
...  

Abstract Quantum control of solid-state spin qubits typically involves pulses in the microwave domain, drawing from the well-developed toolbox of magnetic resonance spectroscopy. Driving a solid-state spin by optical means offers a high-speed alternative, which in the presence of limited spin coherence makes it the preferred approach for high-fidelity quantum control. Bringing the full versatility of magnetic spin resonance to the optical domain requires full phase and amplitude control of the optical fields. Here, we imprint a programmable microwave sequence onto a laser field and perform electron spin resonance in a semiconductor quantum dot via a two-photon Raman process. We show that this approach yields full SU(2) spin control with over $$98 \%$$ 98 % $$\pi$$ π -rotation fidelity. We then demonstrate its versatility by implementing a particular multi-axis control sequence, known as spin locking. Combined with electron-nuclear Hartmann–Hahn resonances which we also report in this work, this sequence will enable efficient coherent transfer of a quantum state from the electron spin to the mesoscopic nuclear ensemble.

2014 ◽  
Vol 10 (10) ◽  
pp. 725-730 ◽  
Author(s):  
Jack Hansom ◽  
Carsten H. H. Schulte ◽  
Claire Le Gall ◽  
Clemens Matthiesen ◽  
Edmund Clarke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document