Assessment methods and performance metrics for redox flow batteries

Nature Energy ◽  
2021 ◽  
Author(s):  
Yanxin Yao ◽  
Jiafeng Lei ◽  
Yang Shi ◽  
Fei Ai ◽  
Yi-Chun Lu
2016 ◽  
Vol 305 ◽  
pp. 182-190 ◽  
Author(s):  
Christine Minke ◽  
Thorsten Hickmann ◽  
Antonio R. dos Santos ◽  
Ulrich Kunz ◽  
Thomas Turek

2014 ◽  
Vol 247 ◽  
pp. 1040-1051 ◽  
Author(s):  
Vilayanur Viswanathan ◽  
Alasdair Crawford ◽  
David Stephenson ◽  
Soowhan Kim ◽  
Wei Wang ◽  
...  

2018 ◽  
Vol 90 ◽  
pp. 992-1016 ◽  
Author(s):  
Luis F. Arenas ◽  
Adeline Loh ◽  
David P. Trudgeon ◽  
Xiaohong Li ◽  
Carlos Ponce de León ◽  
...  

2020 ◽  
Author(s):  
wenda wu ◽  
Jian Luo ◽  
Fang Wang ◽  
Bing Yuan ◽  
Tianbiao Liu

Aqueous organic redox flow batteries (AORFBs) have become increasing attractive for scalable energy storage. However, it remains challenging to develop high voltage, powerful AORFBs because of the lack of catholytes with high redox potential. Herein, we report methyl viologen dibromide (<b>[MV]Br<sub>2</sub></b>) as a facile self-trapping, bipolar redox electrolyte material for pH neutral redox flow battery applications. The formation of the <b>[MV](Br<sub>3</sub>)<sub>2</sub></b> complex was computationally predicted and experimentally confirmed. The low solubility <b>[MV](Br<sub>3</sub>)<sub>2</sub></b> complex in the catholyte during the battery charge process not only mitigates the crossover of charged tribromide species (Br<sub>3</sub><sup>-</sup>) and addresses the toxicity concern of volatile bromine simultaneously. A 1.53 V bipolar MV/Br AORFB delivered outstanding battery performance at pH neutral conditions, specifically, 100% total capacity retention, 133 mW/cm<sup>2</sup> power density, and 60% energy efficiency at 40 mA/cm<sup>2</sup>.


Sign in / Sign up

Export Citation Format

Share Document