negative electrodes
Recently Published Documents


TOTAL DOCUMENTS

755
(FIVE YEARS 162)

H-INDEX

72
(FIVE YEARS 8)

Author(s):  
Yasuhito Aoki ◽  
Mami Oda ◽  
Sachiko Kojima ◽  
Taihei Ishihama ◽  
Tsuyoshi Nagashima ◽  
...  

Small ◽  
2021 ◽  
pp. 2104986
Author(s):  
Xu Hou ◽  
Travis P. Pollard ◽  
Wenguang Zhao ◽  
Xin He ◽  
Xiaokang Ju ◽  
...  

2021 ◽  
Vol 105 (1) ◽  
pp. 13-20
Author(s):  
Josef Maca ◽  
Jiri Libich ◽  
Tomas Kazda ◽  
Kamil Jasso ◽  
Pavel Cudek

The battery usage increases every year. The batteries help with development of mobility both from point of view of portable electronic and from view of goods and people transport in electromobility. One of the main parameters is gravimetric and volumetric capacity, which we are trying continually increase. One of the main ways is to change current used material by new ones with better parameters. One of possibilities is to use thin layer and so-called battery conversion principle. Electrodes works on conversion principle have usual higher capacities. The main disadvantage of such system is large volume change of electrode material due charging and discharging. This can be partly solved by special 3D structure which compensate the volume changes. This work focusses on preparing basic thin layer electrode by help of electrodeposition. The electrodes are then cycled against lithium.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3183
Author(s):  
Mariangela Curcio ◽  
Sergio Brutti ◽  
Lorenzo Caripoti ◽  
Angela De Bonis ◽  
Roberto Teghil

Pyrolyzed carbons from bio-waste sources are renewable nanomaterials for sustainable negative electrodes in Li- and Na-ion batteries. Here, carbon derived from a hazelnut shell has been obtained by hydrothermal processing of the bio-waste followed by thermal treatments and laser irradiation in liquid. A non-focused nanosecond pulsed laser source has been used to irradiate pyrolyzed carbon particles suspended in acetonitrile to modify the surface and morphology. Morphological, structural, and compositional changes have been investigated by microscopy, spectroscopy, and diffraction to compare the materials properties after thermal treatments as well as before and after the irradiation. Laser irradiation in acetonitrile induces remarkable alteration in the nanomorphology, increase in the surface area and nitrogen enrichment of the carbon surfaces. These materials alterations are beneficial for the electrochemical performance in lithium half cells as proved by galvanostatic cycling at room temperature.


2021 ◽  
Vol 2079 (1) ◽  
pp. 012005
Author(s):  
Baoguo Zhang ◽  
Ling Tong ◽  
Lin Wu ◽  
Xiaoyu Yang ◽  
Zhiyuan Liao ◽  
...  

Abstract As demand for high-performance electric vehicles, portable electronic equipment, and energy storage devices increases rapidly, the development of lithium-ion batteries with higher specific capacity and rate performance has become more and more urgent. As the main body of lithium storage, negative electrode materials have become the key to improving the performance of lithium batteries. The high specific capacity and low lithium insertion potential of silicon materials make them the best choice to replace traditional graphite negative electrodes. Pure silicon negative electrodes have huge volume expansion effects and SEI membranes (solid electrolyte interface) are easily damaged. Therefore, researchers have improved the performance of negative electrode materials through silicon-carbon composites. This article introduces the current design ideas of ultra-fine silicon structure for lithium batteries and the method of compounding with carbon materials, and reviews the research progress of the performance of silicon-carbon composite negative electrode materials. Ultra-fine silicon materials include disorderly dispersed ultra-fine silicon particles such as porous structures, hollow structures, and core-shell structures; and ordered ultra-fine silicon, such as silicon nanowire arrays, silicon nanotube arrays, and interconnected silicon nano-films. The article analyzes and compares the composite method of ultrafine silicon and carbon materials with different structural designs, and the effect of composite negative electrode materials on the specific capacity and cycle performance of the battery. Finally, the research direction of silicon-carbon composite negative electrode materials is prospected.


Sign in / Sign up

Export Citation Format

Share Document