scholarly journals ORION: a web server for protein fold recognition and structure prediction using evolutionary hybrid profiles

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yassine Ghouzam ◽  
Guillaume Postic ◽  
Pierre-Edouard Guerin ◽  
Alexandre G. de Brevern ◽  
Jean-Christophe Gelly
2014 ◽  
Vol 11 (95) ◽  
pp. 20131147 ◽  
Author(s):  
Agnel Praveen Joseph ◽  
Alexandre G. de Brevern

Protein folding has been a major area of research for many years. Nonetheless, the mechanisms leading to the formation of an active biological fold are still not fully apprehended. The huge amount of available sequence and structural information provides hints to identify the putative fold for a given sequence. Indeed, protein structures prefer a limited number of local backbone conformations, some being characterized by preferences for certain amino acids. These preferences largely depend on the local structural environment. The prediction of local backbone conformations has become an important factor to correctly identifying the global protein fold. Here, we review the developments in the field of local structure prediction and especially their implication in protein fold recognition.


2009 ◽  
Vol 10 (1) ◽  
pp. 416 ◽  
Author(s):  
Ren-Xiang Yan ◽  
Jing-Na Si ◽  
Chuan Wang ◽  
Ziding Zhang

Author(s):  
Jiangyi Shao ◽  
Bin Liu

Abstract As one of the most important tasks in protein structure prediction, protein fold recognition has attracted more and more attention. In this regard, some computational predictors have been proposed with the development of machine learning and artificial intelligence techniques. However, these existing computational methods are still suffering from some disadvantages. In this regard, we propose a new network-based predictor called ProtFold-DFG for protein fold recognition. We propose the Directed Fusion Graph (DFG) to fuse the ranking lists generated by different methods, which employs the transitive closure to incorporate more relationships among proteins and uses the KL divergence to calculate the relationship between two proteins so as to improve its generalization ability. Finally, the PageRank algorithm is performed on the DFG to accurately recognize the protein folds by considering the global interactions among proteins in the DFG. Tested on a widely used and rigorous benchmark data set, LINDAHL dataset, experimental results show that the ProtFold-DFG outperforms the other 35 competing methods, indicating that ProtFold-DFG will be a useful method for protein fold recognition. The source code and data of ProtFold-DFG can be downloaded from http://bliulab.net/ProtFold-DFG/download


2014 ◽  
Vol 30 (13) ◽  
pp. 1850-1857 ◽  
Author(s):  
Pooya Zakeri ◽  
Ben Jeuris ◽  
Raf Vandebril ◽  
Yves Moreau

Sign in / Sign up

Export Citation Format

Share Document