Recent advances in wide bandgap semiconducting polymers for polymer solar cells

2017 ◽  
Vol 5 (5) ◽  
pp. 1860-1872 ◽  
Author(s):  
Yunlong Ma ◽  
Zhenjing Kang ◽  
Qingdong Zheng

Recent progresses in wide bandgap semiconducting polymers for PSCs are summarized and the material structure–property-device performance correlations are discussed.

Author(s):  
Hoseon You ◽  
Austin Jones ◽  
Boo Soo Ma ◽  
Geon-U Kim ◽  
Seungjin Lee ◽  
...  

In this study, two wide-bandgap PM7 polymer derivatives are developed via simple structural modification of the fused-accepting unit by incorporating ester groups on terthiophene at different positions (i.e., two ester...


2014 ◽  
Vol 2 (19) ◽  
pp. 6916 ◽  
Author(s):  
Pachagounder Sakthivel ◽  
Kakaraparthi Kranthiraja ◽  
Chinnusamy Saravanan ◽  
Kumarasamy Gunasekar ◽  
Hong Il Kim ◽  
...  

Polymer ◽  
2021 ◽  
pp. 124193
Author(s):  
Zesheng Zhang ◽  
Feilong Pan ◽  
Mei Luo ◽  
Dong Yuan ◽  
Haizhen Liu ◽  
...  

2017 ◽  
Vol 5 (19) ◽  
pp. 9204-9209 ◽  
Author(s):  
Qunping Fan ◽  
Wenyan Su ◽  
Xia Guo ◽  
Yan Wang ◽  
Juan Chen ◽  
...  

Non-fullerene polymer solar cells based on a wide-bandgap polymer, PSBZ, exhibited a PCE of up to 10.5% with a high Jsc of 19.0 mA cm−2.


2019 ◽  
Vol 7 (7) ◽  
pp. 3307-3316 ◽  
Author(s):  
Qisheng Tu ◽  
Changquan Tang ◽  
Qingdong Zheng

Novel wide-bandgap copolymers based on ladder-type dithienocyclopentadibenzothiophene were developed for polymer solar cells with 9.46% efficiency and excellent stability.


2019 ◽  
Vol 2 (10) ◽  
pp. 7572-7583 ◽  
Author(s):  
Xiao’e Jia ◽  
Gongchu Liu ◽  
Shanshan Chen ◽  
Zhenchao Li ◽  
Zhenfeng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document