blend polymer
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 55)

H-INDEX

30
(FIVE YEARS 6)

2021 ◽  
pp. 108201322110418
Author(s):  
Maryam Pyro- Mossavi ◽  
Mahboobeh Kashiri ◽  
Yahya Maghsoudlou ◽  
Morteza Khomiri ◽  
Mehran Alami

Wheat filter flour is a by-product derived from the modern wheat milling process. In this study, the influence of plasticizer type (glycerol (G) and sorbitol (S)) and content (25, 35, and 45 g/100 g polymer) on the wheat filter flour-based film was evaluated. Regardless of plasticizer type, increasing the plasticizer content enhanced moisture content, water solubility, and water vapor permeability of film samples. The S-plasticized films presented the greatest tensile strength and the lowest EAB%. The scanning electron microscope observations confirmed the uniform structure of G-plasticized film. Moreover, antimicrobial and physico-mechanical properties of G-plasticized (25%) film were evaluated at the presence of carvacrol (5 and 10 g/100 g polymer). The considerable improvement was achieved in water affinity (14.2%) and flexibility (8.6%) by incorporating 10% carvacrol in G-plasticized films. The greatest inhibitory properties of active wheat filter flour films were observed against Aspergillus niger. By increasing the carvacrol concentration in film-forming solution, the inhibitory activity against Listeria monocytogenes and Escherichia coli in the liquid food model system was increased by 90.3% and 66.95%, respectively. Moreover, the active wheat filter flour-based film released a considerable insecticidal activity against Sitophilus granarius and Tribolium confusum. This work offers a novel utilization of wheat filter flour as an inexpensive blend polymer to manufacture multifunctional active film, which provides a promising approach for pest management besides enhancing the safety of products.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2341
Author(s):  
Abril Fonseca-García ◽  
Carolina Caicedo ◽  
Enrique Javier Jiménez-Regalado ◽  
Graciela Morales ◽  
Rocio Yaneli Aguirre-Loredo

Biodegradable packaging prepared from starch is an alternative to fossil-based plastic packaging. However, the properties of starch packaging do not comply with the necessary physicochemical properties to preserve food. Hence, in a previous study, we reported the preparation of a composite polymer material based on starch-chitosan-pluronic F127 that was found to be an adequate alternative packaging material. In this study, we modified the physicochemical properties of this material by storing it for 16 months under ambient conditions. The results indicate that the incorporation of pluronic F127 in the blend polymer can help avoid the retrogradation of starch. Moreover, at higher concentrations of pluronic F127, wettability is reduced. Finally, after storage, the materials exhibited surface modification, which is related to a color change and an increase in solubility, as well as a slight increase in stiffness.


2021 ◽  
Vol 21 (6) ◽  
pp. 3203-3217
Author(s):  
Mohd Sadiq ◽  
Mohammad Moeen Hasan Raza ◽  
Mohammad Zulfequar ◽  
Javid Ali

The incorporation of reduced Graphene oxides (rGO) as a nanofiller in the blend polymer nanocomposite (BPNC) based on Polyvinylpyrrolidone (PVP)-Polyvinylalcohol (PVA) and sodium bicarbonate (NaHCO3) are presented. The blend polymer electrolytes films are prepared by the standard solution cast technique, and it is characterized to investigate the structural, morphological, thermal, optical and electrochemical property. The X-ray diffraction confirms the formation of polymer nanocomposite and is agreed with FESEM analysis. The FTIR confirms the presence of various interactions between the polymer, salt and rGO, and indicates the composite formation. The DSC examines the thermal property of the blend polymer nanocomposite electrolytes system. The bandgap energy has been obtained from the UV-spectroscopy and examines the direct and indirect gap, both offer the decreases bandgap with the addition of a higher concentration of rGO as nanofillers. The highest value of ionic conductivity of the film is obtained ~1.39×10−6 S cm−1 at 15 wt.% of rGO content in polymer blend nanocomposite (BPNC) films. For these BPNC films, the electrochemical stability window (ESW) is ~4.0 V at 25 wt.% of rGO content and ionic transport number (tion) is ~0.98, for 10 wt.% of rGO content at the room temperature. These highly stable blend polymer nanocomposite electrolyte films offer the excellent properties for utilized as a separator for solid-state devices e.g., battery, supercapacitors, electrochromic display devices and other electrochemical energy storage/ conversion devices respectively.


Sign in / Sign up

Export Citation Format

Share Document