Solvent-directed control over the topology of entanglement in square lattice (sql) coordination networks

2019 ◽  
Vol 55 (10) ◽  
pp. 1454-1457 ◽  
Author(s):  
Rana Sanii ◽  
Carol Hua ◽  
Ewa Patyk-Kaźmierczak ◽  
Michael J. Zaworotko

We report herein that the mode of entanglement in square lattice, sql, coordination networks formed by an extended bis-imidazole ligand, L, can be controlled by the solvent used during solvothermal synthesis.

2010 ◽  
Vol 10 (2) ◽  
pp. 709-715 ◽  
Author(s):  
Debasis Banerjee ◽  
Sun Jin Kim ◽  
Lauren A. Borkowski ◽  
Wenqian Xu ◽  
John B. Parise

2016 ◽  
Vol 55 (35) ◽  
pp. 10268-10272 ◽  
Author(s):  
Kai-Jie Chen ◽  
David G. Madden ◽  
Tony Pham ◽  
Katherine A. Forrest ◽  
Amrit Kumar ◽  
...  

2016 ◽  
Vol 128 (35) ◽  
pp. 10424-10428 ◽  
Author(s):  
Kai-Jie Chen ◽  
David G. Madden ◽  
Tony Pham ◽  
Katherine A. Forrest ◽  
Amrit Kumar ◽  
...  

2022 ◽  
Author(s):  
Michael Zaworotko ◽  
Shi-Qiang Wang ◽  
Shaza Darwish ◽  
Debobroto Sensharma

Coordination networks that undergo guest-induced switching between “closed” nonporous and “open” porous phases are of increasing interest as the resulting stepped sorption isotherms can offer exceptional working capacities for gas...


2021 ◽  
Author(s):  
Shi-Qiang Wang ◽  
Shaza Darwish ◽  
Debobroto Sensharma ◽  
Michael J. Zaworotko

Coordination networks that undergo guest-induced switching between “closed” nonporous and “open” porous phases are of increasing interest as the resulting stepped sorption isotherms can offer exceptional working capacities for gas storage applications. For practical utility, the gate ad/desorption pressures (Pga/Pgd) must lie between the storage (Pst) and delivery (Pde) pressures and there must be fast switching kinetics. Herein we study the effect of metal cation substitution on the switching pressure of a family of square lattice coordination networks [M(4,4’-bipyridine)2(NCS)]n (sql-1-M-NCS, M = Fe, Co and Ni) with respect to CO2 sorption. The Clausius-Clapeyron equation was used to correlate Pga/Pgd and temperature. At 298 K, Pga/Pgd values were found to vary from 31.6/26.7 bar (M = Fe) to 26.7/20.9 bar (M = Co) and 18.5/14.6 bar (M = Ni). The switching event occurs within 10 minutes as verified by dynamic CO2 sorption tests. In addition, in situ synchrotron PXRD and molecular simulations provided structural insight into the observed switching event, which we attribute to layer expansion of sql-1-M-NCS via intercalation and inclusion of CO2 molecules. This study could pave the way for rational control over Pga/Pgd in switching adsorbent layered materials and enhance their potential utility in gas storage applications.


2014 ◽  
Vol 9 (2) ◽  
pp. 87-90 ◽  
Author(s):  
Zhi Yuan Wang ◽  
Feng Ping Wang ◽  
Yan Li ◽  
Ming Yan Li ◽  
Muhammad Zubair Iqbal ◽  
...  

2016 ◽  
Vol 31 (5) ◽  
pp. 473 ◽  
Author(s):  
WU Xuan-Rong ◽  
YANG Qiao-Zhen ◽  
ZHAO Yong-Xiang ◽  
LU Yan-Luo

2020 ◽  
Author(s):  
Julian Keupp ◽  
Johannes P. Dürholt ◽  
Rochus Schmid

The prototypical pillared layer MOFs, formed by a square lattice of paddle-<br>wheel units and connected by dinitrogen pillars, can undergo a breathing phase<br>transition by a “wine-rack” type motion of the square lattice. We studied this not<br>yet fully understood behavior using an accurate first principles parameterized force<br>field (MOF-FF) for larger nanocrystallites on the example of Zn 2 (bdc) 2 (dabco) [bdc:<br>benzenedicarboxylate, dabco: (1,4-diazabicyclo[2.2.2]octane)] and found clear indi-<br>cations for an interface between a closed and an open pore phase traveling through<br>the system during the phase transformation [Adv. Theory Simul. 2019, 2, 11]. In<br>conventional simulations in small supercells this mechanism is prevented by periodic<br>boundary conditions (PBC), enforcing a synchronous transformation of the entire<br>crystal. Here, we extend this investigation to pillared layer MOFs with flexible<br>side-chains, attached to the linker. Such functionalized (fu-)MOFs are experimen-<br>tally known to have different properties with the side-chains acting as fixed guest<br>molecules. First, in order to extend the parameterization for such flexible groups,<br>1a new parametrization strategy for MOF-FF had to be developed, using a multi-<br>structure force based fit method. The resulting parametrization for a library of<br>fu-MOFs is then validated with respect to a set of reference systems and shows very<br>good accuracy. In the second step, a series of fu-MOFs with increasing side-chain<br>length is studied with respect to the influence of the side-chains on the breathing<br>behavior. For small supercells in PBC a systematic trend of the closed pore volume<br>with the chain length is observed. However, for a nanocrystallite model a distinct<br>interface between a closed and an open pore phase is visible only for the short chain<br>length, whereas for longer chains the interface broadens and a nearly concerted trans-<br>formation is observed. Only by molecular dynamics simulations using accurate force<br>fields such complex phenomena can be studied on a molecular level.


Sign in / Sign up

Export Citation Format

Share Document