co2 sorption
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 95)

H-INDEX

44
(FIVE YEARS 8)

2022 ◽  
pp. 134607
Author(s):  
Gina Bang ◽  
Kyung-Min Kim ◽  
Seongmin Jin ◽  
Chang-Ha Lee

2021 ◽  
Vol 23 (1) ◽  
pp. 200
Author(s):  
Raquel V. Barrulas ◽  
Clara López-Iglesias ◽  
Marcileia Zanatta ◽  
Teresa Casimiro ◽  
Gonzalo Mármol ◽  
...  

CO2 levels in the atmosphere are increasing exponentially. The current climate change effects motivate an urgent need for new and sustainable materials to capture CO2. Porous materials are particularly interesting for processes that take place near atmospheric pressure. However, materials design should not only consider the morphology, but also the chemical identity of the CO2 sorbent to enhance the affinity towards CO2. Poly(ionic liquid)s (PILs) can enhance CO2 sorption capacity, but tailoring the porosity is still a challenge. Aerogel’s properties grant production strategies that ensure a porosity control. In this work, we joined both worlds, PILs and aerogels, to produce a sustainable CO2 sorbent. PIL-chitosan aerogels (AEROPILs) in the form of beads were successfully obtained with high porosity (94.6–97.0 %) and surface areas (270–744 m2/g). AEROPILs were applied for the first time as CO2 sorbents. The combination of PILs with chitosan aerogels generally increased the CO2 sorption capability of these materials, being the maximum CO2 capture capacity obtained (0.70 mmol g−1, at 25 °C and 1 bar) for the CHT:P[DADMA]Cl30% AEROPIL.


Author(s):  
Pu Huang ◽  
Yafei Guo ◽  
Guodong Wang ◽  
Jun Yu ◽  
Chuanwen Zhao ◽  
...  

2021 ◽  
Author(s):  
Shi-Qiang Wang ◽  
Shaza Darwish ◽  
Debobroto Sensharma ◽  
Michael J. Zaworotko

Coordination networks that undergo guest-induced switching between “closed” nonporous and “open” porous phases are of increasing interest as the resulting stepped sorption isotherms can offer exceptional working capacities for gas storage applications. For practical utility, the gate ad/desorption pressures (Pga/Pgd) must lie between the storage (Pst) and delivery (Pde) pressures and there must be fast switching kinetics. Herein we study the effect of metal cation substitution on the switching pressure of a family of square lattice coordination networks [M(4,4’-bipyridine)2(NCS)]n (sql-1-M-NCS, M = Fe, Co and Ni) with respect to CO2 sorption. The Clausius-Clapeyron equation was used to correlate Pga/Pgd and temperature. At 298 K, Pga/Pgd values were found to vary from 31.6/26.7 bar (M = Fe) to 26.7/20.9 bar (M = Co) and 18.5/14.6 bar (M = Ni). The switching event occurs within 10 minutes as verified by dynamic CO2 sorption tests. In addition, in situ synchrotron PXRD and molecular simulations provided structural insight into the observed switching event, which we attribute to layer expansion of sql-1-M-NCS via intercalation and inclusion of CO2 molecules. This study could pave the way for rational control over Pga/Pgd in switching adsorbent layered materials and enhance their potential utility in gas storage applications.


2021 ◽  
Vol 53 ◽  
pp. 101737
Author(s):  
Tianyi Cai ◽  
Xiaoping Chen ◽  
Hongjian Tang ◽  
Wu Zhou ◽  
Ye Wu ◽  
...  
Keyword(s):  

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2893
Author(s):  
Eduardo J. Cueto-Díaz ◽  
Alberto Castro-Muñiz ◽  
Fabián Suárez-García ◽  
Santos Gálvez-Martínez ◽  
Mª Carmen Torquemada-Vico ◽  
...  

In this work, we have described the characterization of hybrid silica nanoparticles of 50 nm size, showing outstanding size homogeneity, a large surface area, and remarkable CO2 sorption/desorption capabilities. A wide battery of techniques was conducted ranging from spectroscopies such as: UV-Vis and IR, to microscopies (SEM, AFM) and CO2 sorption/desorption isotherms, thus with the purpose of the full characterization of the material. The bare SiO2 (50 nm) nanoparticles modified with 3-aminopropyl (triethoxysilane), APTES@SiO2 (50 nm), show a remarkable CO2 sequestration enhancement compared to the pristine material (0.57 vs. 0.80 mmol/g respectively at 50 °C). Furthermore, when comparing them to their 200 nm size counterparts (SiO2 (200 nm) and APTES@SiO2 (200 nm)), there is a marked CO2 capture increment as a consequence of their significantly larger micropore volume (0.25 cm3/g). Additionally, ideal absorbed solution theory (IAST) was conducted to determine the CO2/N2 selectivity at 25 and 50 °C of the four materials of study, which turned out to be >70, being in the range of performance of the most efficient microporous materials reported to date, even surpassing those based on silica.


Author(s):  
Jennifer A. Schott ◽  
Chi-Linh Do-Thanh ◽  
Weida Shan ◽  
Nicolette G. Puskar ◽  
Sheng Dai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document