scholarly journals Role of polysilicon in poly-Si/SiOx passivating contacts for high-efficiency silicon solar cells

RSC Advances ◽  
2019 ◽  
Vol 9 (40) ◽  
pp. 23261-23266 ◽  
Author(s):  
HyunJung Park ◽  
Soohyun Bae ◽  
Se Jin Park ◽  
Ji Yeon Hyun ◽  
Chang Hyun Lee ◽  
...  

The efficiency of silicon solar cell with poly-Si/SiOx passivating contact was improved by etching of poly-Si which improves short circuit current density without affecting passivation quality and fill factor.

2017 ◽  
Vol 5 (23) ◽  
pp. 11739-11745 ◽  
Author(s):  
Jiangquan Mai ◽  
Haipeng Lu ◽  
Tsz-Ki Lau ◽  
Shih-Hao Peng ◽  
Chain-Shu Hsu ◽  
...  

The short circuit current density and fill factor are improved in ternary organic solar cell due to the high morphology compatibility.


2005 ◽  
Vol 12 (01) ◽  
pp. 19-25 ◽  
Author(s):  
M. RUSOP ◽  
M. ADACHI ◽  
T. SOGA ◽  
T. JIMBO

Phosphorus-doped amorphous carbon (n-C:P) films were grown by r. f.-power-assisted plasma-enhanced chemical vapor deposition at room temperature using a novel solid red phosphorus target. The influence of phosphorus doping on material properties of n-C:P based on the results of simultaneous characterization are reported. Moreover, the solar cell properties such as series resistance, short circuit current density, open circuit current voltage, fill factor and conversion efficiency along with the spectral response are reported for the fabricated carbon-based n-C:P/p-Si heterojunction solar cell that was measured by standard measurement technique. The cells performances have been given in the dark I–V rectifying curve and I–V working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm 2, 25°C). The maximum of open-circuit voltage (V oc ) and short-circuit current density (J sc ) for the cells are observed to be approximately 236 V and 7.34, mAcm 2 respectively for the n-C:P/p-Si cell grown at lower r. f. power of 100 W. The highest energy conversion efficiency (η) and fill factor (FF) were found to be approximately 0.84% and 49%, respectively. We have observed that the rectifying nature of the heterojunction structures is due to the nature of n-C:P films.


In this paper, a novel photonic crystal (PhC) polycrystalline CdTe/Silicon solar cells are theoretically explained that increase their short circuit current density and conversion efficiency. The proposed structure consist of a polycrystalline CdTe/Silicon solar cell that a photonic crystal is formed in the upper cell. The optical confinement is achieved by means of photonic crystal that can adjust the propagation and distribution of photons in solar cells. For validation of modeling, the electrical properties of the experimentally-fabricated based CdS/CdTe solar cell is modeled and compared that there is good agreement between the modeling results and experimental results from the litterature. The results of this study showed that the solar cell efficiency is increased by about 25% compared to the reference cell by using photonic crystal. The open circuit voltage, short circuit current density, fill factor and conversion efficiency of proposed solar cell structure are 1.01 V, 40.7 mA/cm2, 0.95 and 27% under global AM 1.5 conditions, respectively. Furthermore, the influence of carrier lifetime variation in the absorber layer of proposed solar cell on the electrical characteristics was theoretically considered and investigated.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
H. C. Hassan ◽  
Z. H. Z. Abidin ◽  
F. I. Chowdhury ◽  
A. K. Arof

The objective of this work is to investigate the performance of chlorophyll sensitized solar cells (CSSCs) with gel electrolyte based on polyvinyl alcohol (PVA) with single iodide salt (potassium iodide (KI)) and double salt (KI and tetrapropylammonium iodide (TPAI)). Chlorophyll was extracted from the bryophyteHyophila involuta. The CSSC with electrolyte containing only KI salt produced a short circuit current density (Jsc) of 4.59 mA cm−2, open circuit voltage (Voc) of 0.61 V, fill factor (FF) of 0.64, and efficiency (η) of 1.77%. However, the CSSC with double salt electrolyte exhibitedJscof 5.96 mA cm−2,Vocof 0.58 V, fill factor FF of 0.58, andηof 2.00%. Since CSSC with double salt electrolyte showed better efficiency, other cells fabricated will use the double salt electrolyte. On addition of 0.7 M tetrabutyl pyridine (TBP) to the double salt electrolyte, the cell’s efficiency increased to 2.17%,Jsc=5.37 mA cm−2,Voc=0.55 V, and FF = 0.73. With 5 mM chenodeoxycholic acid (CDCA) added to the chlorophyll, the light to electricity efficiency increased to 2.62% withJscof 8.44 mA cm−2,Vocof 0.54 V, and FF of 0.58.


2021 ◽  
pp. 100783
Author(s):  
Christopher Rosiles-Perez ◽  
Sirak Sidhik ◽  
Luis Ixtilico-Cortés ◽  
Fernando Robles-Montes ◽  
Tzarara López-Luke ◽  
...  

2020 ◽  
Vol 92 (2) ◽  
pp. 20901
Author(s):  
Abdul Kuddus ◽  
Md. Ferdous Rahman ◽  
Jaker Hossain ◽  
Abu Bakar Md. Ismail

This article presents the role of Bi-layer anti-reflection coating (ARC) of TiO2/ZnO and back surface field (BSF) of V2O5 for improving the photovoltaic performance of Cadmium Sulfide (CdS) and Cadmium Telluride (CdTe) based heterojunction solar cells (HJSCs). The simulation was performed at different concentrations, thickness, defect densities of each active materials and working temperatures to optimize the most excellent structure and working conditions for achieving the highest cell performance using obtained optical and electrical parameters value from the experimental investigation on spin-coated CdS, CdTe, ZnO, TiO2 and V2O5 thin films deposited on the glass substrate. The simulation results reveal that the designed CdS/CdTe based heterojunction cell offers the highest efficiency, η of ∼25% with an enhanced open-circuit voltage, Voc of 0.811 V, short circuit current density, Jsc of 38.51 mA cm−2, fill factor, FF of 80% with bi-layer ARC and BSF. Moreover, it appears that the TiO2/ZnO bi-layer ARC, as well as ETL and V2O5 as BSF, could be highly promising materials of choice for CdS/CdTe based heterojunction solar cell.


Sign in / Sign up

Export Citation Format

Share Document