metal design
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
pp. 337-347
Author(s):  
Ermin Bajramović ◽  
Milan Jurković ◽  
Dženana Gačo ◽  
Emir Bajramović ◽  
Esad Bajramović

Author(s):  
Aditya Dhobale

Abstract: Construction of Body in White (BiW) revolves around plenty of challenges. Ranging from BiW fixtures to curbing weight of Body in White sheet metal design. This paper discusses about all the design aspects in BiW manufacturing in automobile and confronting challenges that occurs. At present, lots of existing theories are being applied and efforts to improve the same are being made. This paper provides a path on how components can be developed and make necessary improvements. CAE (Computer Aided Engineering) tools have been used for FEA (Finite Element Analysis) and also an example of stress analysis of automotive chassis is given. An outcome depending on behaviour of loads acting on frame is drawn. The importance of hollow tubes, tubes of different- cross sections to counter weight and ease the designing of BiW frame have been proposed. This paper also provides insight on safety parameters with current construction of tubular frame chassis. Other solutions such as hybrid tubes, foam padding and plastic trim have been pointed out in this paper. Keywords: CAE, FEA, manufacturing, loads, tubes, cycle-time, cross-section.


Author(s):  
Sung Won Yoon ◽  
Chang Wook Park

The purpose of this study is to determine the correct estimation of laminated design for composite materials applied to a ship radar mast. Recently, as the IMO’s environmental regulations have been strengthened to increase the energy efficiency of ships, the IMO has also begun to consider operational economics such as energy reduction through lightening the hull. Demand for lighter weight technology using composite materials is increasing. Examples would include lightweight large structures using composite materials, composite materials replacing metal design parts, and polymer composite materials applicable to marine environments. Therefore, in this study, the properties of the material were analyzed using a simulation program to verify the applicability of the composite material for ship radar mast. In addition, the reliability of the simulation result was secured through Fiber/Matrix/Ply correction and the calculation of the laminate dynamics. The results provide basic properties (E33, G23, G13, [Formula: see text]23, [Formula: see text]13, S13, S23) for computer analysis other than mechanical properties derived experimentally.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1374
Author(s):  
Paul Bere ◽  
Mircea Dudescu ◽  
Călin Neamțu ◽  
Cătălin Cocian

Composite materials are very often used in the manufacture of lightweight parts in the automotive industry, manufacturing of cost-efficient elements implies proper technology combined with a structural optimization of the material structure. The paper presents the manufacturing process, experimental and numerical analyses of the mechanical behavior for two composite hoods with different design concepts and material layouts as body components of a small electric vehicle. The first model follows the black metal design and the second one is based on the composite design concept. Manufacturing steps and full details regarding the fabrication process are delivered in the paper. Static stiffness and strain values for lateral, longitudinal and torsional loading cases were investigated. The first composite hood is 254 times lighter than a similar steel hood and the second hood concept is 22% lighter than the first one. The improvement in terms of lateral stiffness for composite hoods about a similar steel hood is for the black metal design concept about 80% and 157% for the hood with a sandwich structure and modified backside frame. Transversal stiffness is few times higher for both composite hoods while the torsional stiffness has an increase of 62% compared to a similar steel hood.


Author(s):  
Yuvaraj Purushothaman ◽  
Hoon Choi ◽  
Narayan Yoganandan ◽  
Jamie Baisden ◽  
Deepak Rajasekaran ◽  
...  

Abstract Various types and designs of artificial discs for cervical disc arthroplasty (CDA) have been introduced to overcome the disadvantages of the conventional anterior cervical discectomy and fusion (ACDF). The purpose of this study was to evaluate the effects of different CDA designs on the range of motion (ROM), intradiscal pressure (IDP), and facet force variables with different types of FDA-approved CDA devices under normal physiological loading conditions. A validated three-dimensional finite element model (FEM) of the intact cervical spinal column (C2-T1) was used in the present study. The intact spine model was modified and used for postoperative FE models simulating CDAs implanted at the C5-C6 intervertebral disc space. The normal surgical procedures were used in the simulations. The hybrid loading protocol (intact spine loading: 2 Nm) with a compressive follower force of 75 N was applied at the superior end of the spine. The inferior endplate of C7 vertebra was constrained in all directions. Flexion, extension, and lateral bending loading conditions were simulated in all models: intact spine and models with different CDA devices. At the index level, all CDAs except the Bryan disc showed an increase in motion, and the range of motions at the adjacent levels decreased in flexion, extension, and lateral bending modes. The largest increase in motion occurred during lateral bending. The Bryan disc reduced the segmental motion at the index level under flexion, extension, and lateral bending, and had compensatory increases in motion at the adjacent levels. The intradiscal pressure reduced at the adjacent levels with Mobi-C and Secure-C devices. The Bryan and Prestige LP devices showed increases in the intradiscal pressure at the adjacent levels due to the reduced index level motion (Bryan disc) and the metal-on-metal design (Prestige LP). The facet force increased at the index level in all CDAs, with the highest force with Mobi-C, and this was attributed to its unrestrained design. The facet force generally decreased at the adjacent levels with CDAs, except for the Bryan disc, due to reduced index level motion, and the Prestige LP in lateral bending, likely due to its metal-on-metal design. The present study demonstrates the influence of different CDA designs on the anterior and posterior loading patterns at the index and adjacent levels. In addition, the study validates key clinical observations: CDA procedure is contraindicated in cases of facet arthropathy; and CDA may be protective against adjacent segment degeneration.


2020 ◽  
Vol 10 (5) ◽  
pp. 6330-6334
Author(s):  
F. A. Alnaimat

Wear has been considered as a major issue for ball and socket artificial discs. This paper studies the effects of ball radius and radial clearance of the artificial disc on the von Mises stresses. Different material combinations, used in artificial discs, are compared. FEA simulation using Solidworks has been conducted for different disk geometries. The highest von Mises stress was 714MPa for 10mm radius metal against metal design. The lowest von Mises stress was 14.8MPa for 16mm radius of the UHMWPE/CoCr material combination, which exhibited the lowest von Mises stresses for all the radii of the ball and socket articulation. Considering radial clearance, the lowest von Mises stress was 14.8MPa for 0.015mm clearance of the UHMWPE/CoCr combination. The highest von Mises stress of 100.8MPa with a radial clearance of 0.25mm was recorded for the same combination. There is a strong relation between the von Mises stress and the geometry of the ball and socket of the artificial disc.


Sign in / Sign up

Export Citation Format

Share Document