The stabilities of Meisenheimer complexes. Part 14. Equilibrium and kinetic data for sodium ethoxide addition to 2,4-dinitro-6-X-phenetoles in ethanol

Author(s):  
Michael R. Crampton
Author(s):  
László G. Kömüves ◽  
Donna S. Turner ◽  
Kathy S. McKee ◽  
Buford L. Nichols ◽  
Julian P. Heath

In this study we used colloidal gold probes to detect the intracellular localization of colostral immunoglobulins in intestinal epithelial cells of newborn piglets.Tissues were obtained from non-suckled newborn and suckled piglets aged between 1 hour to 1 month. Samples were fixed in 2.5 % glutaraldehyde, osmicated and embedded into Spurr’s resin. Thin (80 nm) sections were etched with 5% sodium ethoxide for 5 min, washed and treated with 4 % sodium-m-periodate in distilled water for 30 min. The sections were then first incubated with blocking buffer (2 % BSA, 0.25 % fish skin gelatin, 0.5 % Tween 20 in 10 mM Trizma buffer, pH=7.4 containing 500 mM NaCl) for 30 min followed by the immunoreagents diluted in the same buffer, 1 hr each. For the detection of pig immunoglobulins a rabbit anti-pig IgG antiserum was used followed by goat anti-rabbit IgG-Au10 or protein A-Au15 probes.


1977 ◽  
Vol 16 (03) ◽  
pp. 100-103 ◽  
Author(s):  
C. Schümichen ◽  
J. Waiden ◽  
G. Hoffmann

SummaryThe kinetic data of two different 99mTc-Sn-pyrophosphate compounds (compound A and B) were evaluated in non-adult rats. Only compound A concentrated in bone. Both compounds dispersed rapidly in the intravascular as well as the extravascular space. The plasma protein bond of both compounds increased with time after injection and impaired both the renal clearance of both compounds and the bone clearance of compound A. The renal clearance of both compounds was somewhat above that of 5 1Cr-EDTA. It is concluded that compound A and B is mainly excreted by glomerular filtration. About one fourth of the glomerular filtrate of compound B is reabsorbed and accumulated by the tubular cells.


1961 ◽  
Vol 05 (01) ◽  
pp. 001-020
Author(s):  
Douglas M. Surgenor ◽  
Nancy A. Wilson ◽  
Anne S. Henry

SummaryA method is described for the partial purification of a human plasma factor which accelerates the conversion of prothrombin to thrombin in the presence of tissue thromboplastin. This factor may be dried from the frozen state, and may be kept in stable dry form for long periods of time. The quantitative assay of this activity is done in a classical two-stage prothrombin system using tissue thromboplastin and calcium. From its properties, it is concluded that this activity corresponds to factor V, labile factor and plasma Ac-globulin.Chemical and kinetic studies reveal that human factor V is active in plasma and is destroyed by thrombin. Human serum has little or no factor V activity.These results thus fail to support the postulated activation of factor V during clotting. All of the kinetic data are consistent with an enzymatic role for factor V in the formation of tissue prothrombin activator (thromboplastin).


Sign in / Sign up

Export Citation Format

Share Document