Evolutionary Significant Units versus Geopolitical Taxonomy: Molecular Systematics of an Endangered Sea Turtle (genus Chelonia)

1999 ◽  
Vol 13 (5) ◽  
pp. 990-999 ◽  
Author(s):  
Stephen A. Karl ◽  
Brian W. Bowen
2018 ◽  
Vol 132 (1) ◽  
pp. 79-84 ◽  
Author(s):  
A Pace ◽  
L Meomartino ◽  
A Affuso ◽  
G Mennonna ◽  
S Hochscheid ◽  
...  

2019 ◽  
Vol 608 ◽  
pp. 247-262 ◽  
Author(s):  
MD Ramirez ◽  
JA Miller ◽  
E Parks ◽  
L Avens ◽  
LR Goshe ◽  
...  

2020 ◽  
Vol 13 (3) ◽  
pp. 585-591
Author(s):  
Luana Melo ◽  
Isabel Velasco ◽  
Julia Aquino ◽  
Rosangela Rodrigues ◽  
Edris Lopes ◽  
...  

Fibropapillomatosis is a neoplastic disease that affects sea turtles. It is characterized by multiple papillomas, fibropapillomas and cutaneous and/or visceral fibromas. Although its etiology has not been fully elucidated, it is known that there is a strong involvement of an alpha - herpesvirus, but the influence of other factors such as parasites, genetics, chemical carcinogens, contaminants, immunosuppression and ultraviolet radiation may be important in the disease, being pointed out as one of the main causes of a reduction in the green turtle population. Thus, the objective of this article was to describe the morphology of cutaneous fibropapillomas found in specimens of the green turtle (Chelonia mydas), using light and scanning electron microscopy in order to contribute to the mechanism of tumor formation. Microscopically, it presented hyperplastic stromal proliferation and epidermal proliferation with hyperkeratosis. The bulky mass was coated with keratin, with some keratinocyte invaginations, that allowed the keratin to infiltrate from the epidermis into the dermis, forming large keratinized circular spirals. Another fact that we observed was the influence of the inflammation of the tumors caused by ectoparasites.


2020 ◽  
Vol 27 (5) ◽  
pp. 245-256
Author(s):  
Cemil Aymak ◽  
Aşkın Hasan Uçar ◽  
Yusuf Katılmış ◽  
Eyup Başkale ◽  
Serap Ergene

In this study invertebrate infestation in green turtle (Chelonia mydas) nests were recorded for the first time for Kazanlı beach, Mersin, Turkey. For this aim, in 2006 nesting season, 294 natural intact green turtle nests were sampled to examine their contents and invertebrate infestation was found in 76 (25.85% of the total sampling green turtle nests). These infested nests were examined in terms of the invertebrate faunal composition. The specimens found in the green sea turtle nests were identified to order, family or genus levels and they were represented in 5 orders. These invertebrate groups are Elater sp. larvae (Elateridae; Coleoptera), Pimelia sp. larvae (Tenebrionidae; Coleoptera), Enchytraeidae (Oligochaeta), Cyrptostigmata (Acari), Oniscidae (Isopoda), Formicidae (Hymenoptera). Elater sp. was the most common invertebrate group in the green turtle nests. According to student t test, we found statistically significant differences between 7 independent variables and invertebrate species presence. Furthermore, logistic regression analysis explained that there is a negative relationship between hatching success rate and invertebrate species presence.


2005 ◽  
Author(s):  
Darlene R. Ketten ◽  
Soraya M. Bartol

Author(s):  
Andreas Fleischmann ◽  
Jan Schlauer ◽  
Stephen A. Smith ◽  
Thomas J. Givnish

Molecular systematics demonstrate that carnivorous plants have evolved at least ten times independently, in five orders, 12 families, and 19 genera of angiosperms. Carnivory has arisen once in Nepenthales (a segregate of Caryophyllales), once in Oxalidales, twice in Ericales, and three times each in Lamiales and Poales. Estimated crown ages of these ten lineages range from 1.9 to 81 million years (Mya), with the youngest three lineages (1.9 – 2.6 Mya) being all single genera of Poales, and all involving one or two carnivorous species in an otherwise noncarnivorous group. We now understand the evolution of carnivorous plants based on knowing when and (often) where they diverged from specific noncarnivorous ancestors; inferring which traits were gained, which were retained, and which of the latter may have been crucial preadaptations for carnivory; and identifying the evolutionary drivers of carnivory by evaluating the ecological differences between carnivorous plants and their noncarnivorous relatives.


Sign in / Sign up

Export Citation Format

Share Document