Interictal and Ictal EEG Activity in the Basal Ganglia: An SEEG Study in Patients with Temporal Lobe Epilepsy

Epilepsia ◽  
2002 ◽  
Vol 43 (3) ◽  
pp. 253-262 ◽  
Author(s):  
Ivan Rektor ◽  
Robert Kuba ◽  
Milan Brázdil
2012 ◽  
Vol 43 (01) ◽  
Author(s):  
VE Bernedo Paredes ◽  
H Schwartz ◽  
M Gartenschläger ◽  
M Gartenschläger ◽  
HG Buchholz ◽  
...  

Author(s):  
Mohammed M. Jan ◽  
Mark Sadler ◽  
Susan R. Rahey

Electroencephalography (EEG) is an important tool for diagnosing, lateralizing and localizing temporal lobe seizures. In this paper, we review the EEG characteristics of temporal lobe epilepsy (TLE). Several “non-standard” electrodes may be needed to further evaluate the EEG localization, Ictal EEG recording is a major component of preoperative protocols for surgical consideration. Various ictal rhythms have been described including background attenuation, start-stop-start phenomenon, irregular 2-5 Hz lateralized activity, and 5-10 Hz sinusoidal waves or repetitive epileptiform discharges. The postictal EEG can also provide valuable lateralizing information. Postictal delta can be lateralized in 60% of patients with TLE and is concordant with the side of seizure onset in most patients. When patients are being considered for resective surgery, invasive EEG recordings may be needed. Accurate localization of the seizure onset in these patients is required for successful surgical management.


2019 ◽  
Author(s):  
Xiaosong He ◽  
Ganne Chaitanya ◽  
Burcu Asma ◽  
Lorenzo Caciagli ◽  
Danielle S. Bassett ◽  
...  

AbstractFocal to bilateral tonic-clonic seizures are associated with lower quality of life, higher risk of seizure-related injuries, increased chance of sudden unexpected death, as well as unfavorable treatment outcomes. Achieving greater understanding of its underlying circuitry offers better opportunity to control these particularly serious seizures. Towards this goal, we provide a network science perspective of the interactive pathways among basal ganglia, thalamus and the cortex, to explore the imprinting of secondary seizure generalization on the mesoscale brain network in temporal lobe epilepsy. Specifically, we parameterized the functional organization of both the thalamocortical network and the basal ganglia—thalamus network with resting-state functional magnetic resonance imaging in three groups of patients with different focal to bilateral tonic-clonic seizure histories. Using the participation coefficient to describe the pattern of thalamocortical connections among different cortical networks, we showed that, compared to patients with no previous history, those with positive histories of focal to bilateral tonic-clonic seizures, including both remote (none for over one year) and current (within the past year) histories, presented more uniform distribution patterns of thalamocortical connections in the ipsilateral medial-dorsal thalamic nuclei. As a sign of greater thalamus mediated cortico-cortical communication, this result comports with greater susceptibility to secondary seizure generalization from the epileptogenic temporal lobe to broader brain networks in these patients. Using interregional integration to characterize the functional interaction between basal ganglia and thalamus, we demonstrated that patients with current history presented increased interaction between putamen and globus pallidus internus, and decreased interaction between the latter and the thalamus, compared to the other two patient groups. Importantly, through a series of “disconnection” simulations, we showed that these changes in interactive profiles of the basal ganglia—thalamus network in the current history group mainly depended upon the direct but not the indirect basal ganglia pathway. It is intuitively plausible that such disruption in the striatum modulated tonic inhibition of the thalamus from the globus pallidus internus could lead to an under-suppressed thalamus, which in turn may account for their greater vulnerability to secondary seizure generalization. Collectively, these findings suggest that the broken balance between the basal ganglia inhibition and thalamus synchronization can inform the presence and effective control of focal to bilateral tonic-clonic seizures. The mechanistic underpinnings we uncover may shed light on the development of new treatment strategies for patients with temporal lobe epilepsy.


2019 ◽  
Vol 130 (9) ◽  
pp. 1604-1610
Author(s):  
Xi Liu ◽  
Shasha Wu ◽  
Ahmad Daif ◽  
Taixin Sun ◽  
Varun Chauhan ◽  
...  

1997 ◽  
Vol 14 (5) ◽  
pp. 453
Author(s):  
Edward Mader ◽  
Bruce Fisch ◽  
Piotr Olejniczak ◽  
Ranjith Wijesinghe

2014 ◽  
Vol 130 (2) ◽  
pp. 103-110 ◽  
Author(s):  
J. Breedlove ◽  
T. Nesland ◽  
W. A. Vandergrift ◽  
L. E. Betting ◽  
L. Bonilha

2010 ◽  
Vol 121 ◽  
pp. S139
Author(s):  
S. Sailaja ◽  
S. Chaya ◽  
M. Panigrahi ◽  
C. Sundaram ◽  
S.J.L. Sita

2013 ◽  
Vol 15 (4) ◽  
pp. 392-399 ◽  
Author(s):  
Veronica Pelliccia ◽  
Roberto Mai ◽  
Stefano Francione ◽  
Francesca Gozzo ◽  
Ivana Sartori ◽  
...  

Seizure ◽  
2007 ◽  
Vol 16 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Luís Otávio S.F. Caboclo ◽  
Eliana Garzon ◽  
Pedro A.L. Oliveira ◽  
Henrique Carrete ◽  
Ricardo S. Centeno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document