Hybrid coding scheme based on repeat-accumulate and polar codes

2012 ◽  
Vol 48 (20) ◽  
pp. 1273 ◽  
Author(s):  
K. Niu ◽  
K. Chen
Author(s):  
Jung Hyun Bae ◽  
Ahmed Abotabl ◽  
Hsien-Ping Lin ◽  
Kee-Bong Song ◽  
Jungwon Lee

AbstractA 5G new radio cellular system is characterized by three main usage scenarios of enhanced mobile broadband (eMBB), ultra-reliable and low latency communications (URLLC), and massive machine type communications, which require improved throughput, latency, and reliability compared with a 4G system. This overview paper discusses key characteristics of 5G channel coding schemes which are mainly designed for the eMBB scenario as well as for partial support of the URLLC scenario focusing on low latency. Two capacity-achieving channel coding schemes of low-density parity-check (LDPC) codes and polar codes have been adopted for 5G where the former is for user data and the latter is for control information. As a coding scheme for data, 5G LDPC codes are designed to support high throughput, a variable code rate and length and hybrid automatic repeat request in addition to good error correcting capability. 5G polar codes, as a coding scheme for control, are designed to perform well with short block length while addressing a latency issue of successive cancellation decoding.


2017 ◽  
Vol 95 ◽  
pp. 91-101 ◽  
Author(s):  
Fadi Dornaika ◽  
Mahdi Tavassoli Kejani ◽  
Alireza Bosaghzadeh
Keyword(s):  

Computing ◽  
2017 ◽  
Vol 99 (11) ◽  
pp. 1029-1054 ◽  
Author(s):  
Elif Haytaoglu ◽  
Mehmet Emin Dalkilic

Algorithms ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 218 ◽  
Author(s):  
Marco Mondelli ◽  
S. Hamed Hassani ◽  
Rüdiger Urbanke

We consider the primitive relay channel, where the source sends a message to the relay and to the destination, and the relay helps the communication by transmitting an additional message to the destination via a separate channel. Two well-known coding techniques have been introduced for this setting: decode-and-forward and compress-and-forward. In decode-and-forward, the relay completely decodes the message and sends some information to the destination; in compress-and-forward, the relay does not decode, and it sends a compressed version of the received signal to the destination using Wyner–Ziv coding. In this paper, we present a novel coding paradigm that provides an improved achievable rate for the primitive relay channel. The idea is to combine compress-and-forward and decode-and-forward via a chaining construction. We transmit over pairs of blocks: in the first block, we use compress-and-forward; and, in the second block, we use decode-and-forward. More specifically, in the first block, the relay does not decode, it compresses the received signal via Wyner–Ziv, and it sends only part of the compression to the destination. In the second block, the relay completely decodes the message, it sends some information to the destination, and it also sends the remaining part of the compression coming from the first block. By doing so, we are able to strictly outperform both compress-and-forward and decode-and-forward. Note that the proposed coding scheme can be implemented with polar codes. As such, it has the typical attractive properties of polar coding schemes, namely, quasi-linear encoding and decoding complexity, and error probability that decays at super-polynomial speed. As a running example, we take into account the special case of the erasure relay channel, and we provide a comparison between the rates achievable by our proposed scheme and the existing upper and lower bounds.


2006 ◽  
Vol 54 (9) ◽  
pp. 1703-1703 ◽  
Author(s):  
J. Chen ◽  
R.M. Tanner
Keyword(s):  

Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 149
Author(s):  
Jaume del Olmo Alòs ◽  
Javier Rodríguez Fonollosa

A polar coding scheme is proposed for the Wiretap Broadcast Channel with two legitimate receivers and one eavesdropper. We consider a model in which the transmitter wishes to send the same private (non-confidential) message and the same confidential message reliably to two different legitimate receivers, and the confidential message must also be (strongly) secured from the eavesdropper. The coding scheme aims to use the optimal rate of randomness and does not make any assumption regarding the symmetry or degradedness of the channel. This paper extends previous work on polar codes for the wiretap channel by proposing a new chaining construction that allows to reliably and securely send the same confidential message to two different receivers. This construction introduces new dependencies between the random variables involved in the coding scheme that need to be considered in the secrecy analysis.


Sign in / Sign up

Export Citation Format

Share Document