Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell's equations

2003 ◽  
Vol 39 (7) ◽  
pp. 595 ◽  
Author(s):  
C. Sun ◽  
C.W. Trueman
2016 ◽  
Vol 24 (3) ◽  
Author(s):  
Oleg Y. Imanuvilov ◽  
Masahiro Yamamoto

AbstractWe prove the global uniqueness in determination of the conductivity, the permeability and the permittivity of the two-dimensional Maxwell equations by the partial Dirichlet-to-Neumann map limited to an arbitrary subboundary.


2017 ◽  
Vol 94 (10) ◽  
pp. 2122-2144 ◽  
Author(s):  
Jiaquan Gao ◽  
Kesong Wu ◽  
Yushun Wang ◽  
Panpan Qi ◽  
Guixia He

2021 ◽  
Vol 57 ◽  
pp. 128-141
Author(s):  
M. Ibrahim ◽  
V.G. Pimenov

A two-dimensional in space fractional diffusion equation with functional delay of a general form is considered. For this problem, the Crank-Nicolson method is constructed, based on shifted Grunwald-Letnikov formulas for approximating fractional derivatives with respect to each spatial variable and using piecewise linear interpolation of discrete history with continuation extrapolation to take into account the delay effect. The Douglas scheme is used to reduce the emerging high-dimensional system to tridiagonal systems. The residual of the method is investigated. To obtain the order of the method, we reduce the systems to constructions of the general difference scheme with heredity. A theorem on the second order of convergence of the method in time and space steps is proved. The results of numerical experiments are presented.


Sign in / Sign up

Export Citation Format

Share Document