method of lines
Recently Published Documents


TOTAL DOCUMENTS

857
(FIVE YEARS 100)

H-INDEX

35
(FIVE YEARS 4)

2021 ◽  
pp. 4953-4963
Author(s):  
Alaa Hammodat ◽  
Ghanim Algwauish ◽  
Iman Al-Obaidi

This paper deals with a mathematical model of a fluid flowing between two parallel plates in a porous medium under the influence of electromagnetic forces (EMF). The continuity, momentum, and energy equations were utilized to describe the flow. These equations were stated in their nondimensional forms and then processed numerically using the method of lines. Dimensionless velocity and temperature profiles were also investigated due to the impacts of assumed parameters in the relevant problem. Moreover, we investigated the effects of Reynolds number , Hartmann number M, magnetic Reynolds number , Prandtl number , Brinkman number , and Bouger number , beside those of new physical quantities (N , ). We solved this system by creating a computer program using MATLAB.                                                                               


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 48
Author(s):  
Szymon Skoneczny ◽  
Monika Cioch-Skoneczny

This paper concerns the dynamical modeling of the microbiological processes that occur in the biofilms that are formed on fine inert particles. Such biofilm forms e.g. in fluidized-bed bio-reactors, expanded bed biofilm reactors and biofilm air-lift suspension reactors. An approximate model that is based on the Laplace–Carson transform and a family of approximate models that are based on the concept of the pseudo-stationary substrate concentration profile in the biofilm were proposed. The applicability of the models to the microbiological processes was evaluated following Monod or Haldane kinetics in the conditions of dynamical biofilm growth. The use of approximate models significantly simplifies the computations compared to the exact one. Moreover, the stiffness that was present in the exact model, which was solved numerically by the method of lines, was eliminated. Good accuracy was obtained even for large internal mass transfer resistances in the biofilm. It was shown that significantly higher accuracy was obtained using one of the proposed models than that which was obtained using the previously published approximate model that was derived using the homotopy analysis method.


Author(s):  
Manas Vijay Upadhyay ◽  
Jérémy Bleyer

Abstract A time-explicit Runge-Kutta discontinuous Galerkin (RKDG) finite element scheme is proposed to solve the dislocation transport initial boundary value problem in 3D. The dislocation density transport equation, which lies at the core of this problem, is a first-order unsteady-state advection-reaction-type hyperbolic partial differential equation; the DG approach is well suited to solve such equations that lack any diffusion terms. The development of the RKDG scheme follows the method of lines approach. First, a space semi-discretization is performed using the DG approach with upwinding to obtain a system of ordinary differential equations in time. Then, time discretization is performed using explicit RK schemes to solve this system. The 3D numerical implementation of the RKDG scheme is performed for the first-order (forward Euler), second-order and third-order RK methods using the strong stability preserving approach. These implementations provide (quasi-)optimal convergence rates for smooth solutions. A slope limiter is used to prevent spurious Gibbs oscillations arising from high-order space approximations (polynomial degree ≥ 1) of rough solutions. A parametric study is performed to understand the influence of key parameters of the RKDG scheme on the stability of the solution predicted during a screw dislocation transport simulation. Then, annihilation of two oppositely signed screw dislocations and the expansion of a polygonal dislocation loop are simulated. The RKDG scheme is able to resolve the shock generated during dislocation annihilation without any spurious oscillations and predict the prismatic loop expansion with very low numerical diffusion. These results demonstrate the robustness of the scheme.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Arshad Hussain ◽  
Marjan Uddin ◽  
Sirajul Haq ◽  
Hameed Ullah Jan

We propose a numerical solution to the heat equation in polar cylindrical coordinates by using the meshless method of lines approach. The space variables are discretized by multiquadric radial basis function, and time integration is performed by using the Runge-Kutta method of order 4. In radial basis functions (RBFs), much of the research are devoted to the partial differential equations in rectangular coordinates. This work is an attempt to explore the versatility of RBFs in nonrectangular coordinates as well. The results show that application of RBFs is equally good in polar cylindrical coordinates. Comparison with other cited works confirms that the present approach is accurate as well as easy to implement to problems in higher dimensions.


2021 ◽  
Vol 26 (jai2021.26(2)) ◽  
pp. 64-76
Author(s):  
Hart L ◽  
◽  
Yatsechko N ◽  

The paper is devoted to the development and analysis of approximation-iteration algorithms based on the method of grids and the method of lines for solving an elliptic optimal control problem with a power-law nonlinearity. For the numerical solution of the main boundary value problem and the adjoint one, the second order of accuracy difference schemes are applied using the implicit method of simple iteration. Computational schemes of the method of lines for solving the above-mentioned elliptic boundary value problems are implemented in combination with the shooting method for the approximate solution of boundary value problems for the corresponding ordinary differential equations systems arising in the considered domain after lattice approximation. To minimize the objective functional, well-known gradient-type methods (gradient projection and conditional gradient methods) of constrained optimization are used. The essence of the proposed approximation-iteration approach consists in replacing the original extremal problem with a sequence of grid problems that approximate it on a set of refining grids, and applying an iterative gradient-type method to each of the "approximate" extremal problems. In this case, we propose to construct only a few approximations to the solution for each of the "approximate" problems and to take the last of these approximations, using piecewise linear interpolation, as the initial approximation in the iterative process for the next "approximate" problem. The sequence of the corresponding piecewise linear interpolants is considered as a sequence of approximations to the solution of the original extremal problem. The paper discusses the theoretical foundations of this combined approach, as well as its advantages over traditional methods using the example of solving a model optimal control problem


2021 ◽  
Vol 2131 (3) ◽  
pp. 032041
Author(s):  
M Kh Eshmurodov ◽  
K M Shaimov ◽  
I Khujaev ◽  
J Khujaev

Abstract The use of the method of lines in solving multidimensional problems of mathematical physics makes it possible to eliminate the discrepancies caused by the use of the sweep method in certain coordinates. As a result, the solution of the Poisson equation, for example, is obtained without using the relaxation method. In the article, the problem on the eigenvalues and vectors of the transition matrix is solved for boundary conditions of the third and first types, used to solve a one-dimensional equation of parabolic type by the method of lines. Due to the features of boundary conditions of the third type for determining the eigenvalues, a mixed method was proposed based on the Vieta theorem and the representation of the characteristic equation in trigonometric form typical for the method of lines. To solve the eigenvector problem, a simple sweep method was used with the algebraic compliments to the transition matrix. Discontinuous solutions of a one-dimensional parabolic equation were presented for various values of complex 1 -αl; the method for solving the characteristic equation was selected based on these values. The calculation results are in good agreement with the analytical solution.


Author(s):  
Anna Nakonieczna ◽  
Łukasz Nakonieczny ◽  
István Rácz

The parabolic–hyperbolic form of the constraints is integrated numerically. The applied numerical stencil is fourth-order accurate (in the spatial directions) while “time”-integration is made by using the method of lines with a fourth-order order accurate Runge–Kutta scheme. The proper implementation of the applied numerical method is verified by convergence tests and monitoring the relative and absolute errors is determined by comparing numerically and analytically known solutions of the constraints involving boosted and spinning vacuum single black hole configurations. The main part of our investigations is, however, centered on the construction of initial data for distorted black holes which, in certain cases, have non-negligible gravitational wave content. Remarkably, the applied new method is unprecedented in that it allows to construct initial data for highly boosted and spinning black holes, essentially for the full physical allowed ranges of these parameters. In addition, the use of the evolutionary form of the constraints is free from applying any sort of boundary conditions in the strong field regime.


2021 ◽  
Author(s):  
Waldemar Spiller

Abstract The Method of Lines (MoL) in combination with impedance-/admittance and field transformation (IAFT) is used to analyze electromagnetic waves. The used cases are wave-guiding structures in microwave technology and optics. The core of the theory is the solution of generalized transmission line equations (GTL). In the case of complex structures, a combination with finite differences (FD) can be used. The quality of this solution essentially depends on the effectiveness of the used interpolation of the differences. The individual steps of the FD are permanently linked to the steps of the fully vectorial impedance-/admittance and/or field transformation, so standard libraries cannot be used. Two approaches based on the linear and quadratic interpolation were built into the impedance-/admittance and field transformation in the past. However, the degree of improvement due to one or another kind of interpolation depends on the concrete behavior of the solution sought. In the case of complex structures, choosing the appropriate type of interpolation should be an effective aid. In this paper, an extension of the family of built-in methods is proposed - with the possibility of being able to build any known numerical method from the class of one-step or multi-step methods into the GTL solution. These can be higher-order methods, including fast explicit methods, or particularly stable implicit methods. The transmission matrices for the impedance-/admittance and field transformation serve as the building site. To illustrate the procedure, some different methods are integrated into the GTL solution. The accuracy of the solutions is tested on selected complex structures and compared with each other and with existing solutions. It is shown that the optimal choice of method and the quality of the solution can depend on concrete structures. Keywords: Method of lines, generalized transmission line equations, impedance/admittance transformation, waveguide structures, finite differences, finite differences with second order accuracy.


2021 ◽  
Vol 29 (5) ◽  
pp. 751-764
Author(s):  
Vyacheslav Tsybulin ◽  
◽  
Toan Dang Ha ◽  
Pavel Zelenchuk ◽  
◽  
...  

The purpose of this work is to study the influence of various local models in the equations of diffusion–advection– reaction on the spatial processes of coexistence of predators and prey under conditions of a nonuniform distribution of the carrying capacity. We consider a system of nonlinear parabolic equations to describe diffusion, taxis, and local interaction of a predator and prey in a one-dimensional habitat. Methods. We carried out the study of the system using the dynamical systems approach and a computational experiment based on the method of lines and a scheme of staggered grids. Results. The behavior of the predator – prey system has been studied for various scenarios of local interaction, taking into account the hyperbolic law of prey growth and the Holling effect with nonuniform carrying capacity. We have established paradoxical scenarios of interaction between prey and predator for several modifications of the trophic function. Stationary and nonstationary solutions are analyzed considering diffusion and directed migration of species. Conclusion. The trophic function that considers the heterogeneity of the resource is proposed, which does not lead to paradoxical dynamics.


Sign in / Sign up

Export Citation Format

Share Document