Improved three-phase power flow method for calculation of power losses in unbalanced radial distribution network

2017 ◽  
Vol 2017 (1) ◽  
pp. 2361-2365 ◽  
Author(s):  
Tomislav Alinjak ◽  
Ivica Pavic ◽  
Kruno Trupinic
Computation ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 61
Author(s):  
Oscar Danilo Montoya ◽  
Juan S. Giraldo ◽  
Luis Fernando Grisales-Noreña ◽  
Harold R. Chamorro ◽  
Lazaro Alvarado-Barrios

The power flow problem in three-phase unbalanced distribution networks is addressed in this research using a derivative-free numerical method based on the upper-triangular matrix. The upper-triangular matrix is obtained from the topological connection among nodes of the network (i.e., through a graph-based method). The main advantage of the proposed three-phase power flow method is the possibility of working with single-, two-, and three-phase loads, including Δ- and Y-connections. The Banach fixed-point theorem for loads with Y-connection helps ensure the convergence of the upper-triangular power flow method based an impedance-like equivalent matrix. Numerical results in three-phase systems with 8, 25, and 37 nodes demonstrate the effectiveness and computational efficiency of the proposed three-phase power flow formulation compared to the classical three-phase backward/forward method and the implementation of the power flow problem in the DigSILENT software. Comparisons with the backward/forward method demonstrate that the proposed approach is 47.01%, 47.98%, and 36.96% faster in terms of processing times by employing the same number of iterations as when evaluated in the 8-, 25-, and 37-bus systems, respectively. An application of the Chu-Beasley genetic algorithm using a leader–follower optimization approach is applied to the phase-balancing problem utilizing the proposed power flow in the follower stage. Numerical results present optimal solutions with processing times lower than 5 s, which confirms its applicability in large-scale optimization problems employing embedding master–slave optimization structures.


2004 ◽  
Vol 32 (4) ◽  
pp. 421-433 ◽  
Author(s):  
R. RANJAN ◽  
B. VENKATESH ◽  
A. CHATURVEDI ◽  
D. DAS

2004 ◽  
Vol 32 (4) ◽  
pp. 1-1
Author(s):  
R. Ranjan ◽  
B. Venkatesh ◽  
A. Chaturvedi ◽  
D. Das

2021 ◽  
Author(s):  
Amitkumar Dadhania

Large-scale integration of Wind Generators (WGs) with distribution systems is underway right across the globe in a drive to harness green energy. The Doubly Fed Induction Generator (DFIG) is an important type of WG due to its robustness and versatility. Its accurate and efficient modeling is very important in distribution systems planning and analysis studies, as the older approximate representation method (the constant PQ model) is no longer sufficient given the scale of integration of WGs. This thesis proposes a new three-phase model for the DFIG, compatible with unbalanced three-phase distribution systems, by deriving an analytical representation of its three major components, namely the wind turbine, the voltage source converter, and the wound-rotor induction machine. The proposed model has a set of nonlinear equations that yields the total three-phase active and reactive powers injected into the grid by the DFIG as a function of the grid voltage and wind turbine parameters. This proposed model is integrated with a three-phased unbalanced power flow method and reported in this thesis. The proposed method opens up a new way to conduct power flow studies on unbalanced distribution systems with WGs. The proposed DFIG model is verified using Matlab-Simulink. IEEE 37-bus test system data from the IEEE Distribution System sub-committee is used to benchmark the results of the power flow method.


Author(s):  
Suyanto Suyanto ◽  
Citra Rahmadhani ◽  
Ontoseno Penangsang ◽  
Adi Soeprijanto

<p>Unbalanced three-phase radial distribution system has a complex problem in power system. It has many branches and it is sometimes voltage profile’s not stable at every end branches. For improvement of voltage profile, it can be performed by penetrating of a distributed generation models. Information of voltage profile can be gained by study of power flow.  The Modified Backward-Forward is one of the most widely used methods of development of power flow and has been extensively used for voltage profile analysis. In this paper, a study of power flow based on the Modified Backward-Forward method was used to capture the complexities of unbalanced three phase radial distribution system in the 20 kV distribution network in North Surabaya city, East Java, Indonesia within considering distributed generation models. In summary, for the informants in this study, the Modified Backward-Forward method has had quickly convergence and it’s just needed 3 to 5 iteration of power flow simulation which’s compared to other power flow development methods. Distributed Generation models in the modified the modified 34 BUS IEEE system and 20 kV distribution network has gained voltage profile value on limited range. One of the more significant findings to emerge from this development is that the Modified Backward-Forward method has average of error voltage about 0.0017 % to 0.1749%.</p>


Sign in / Sign up

Export Citation Format

Share Document