flow method
Recently Published Documents


TOTAL DOCUMENTS

1473
(FIVE YEARS 264)

H-INDEX

50
(FIVE YEARS 6)

Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 28
Author(s):  
Travis Krebs ◽  
Goetz Bramesfeld ◽  
Julia Cole

The purpose of this study was to investigate and quantify the transient thrust response of two small rigid rotors in forward flight. This was accomplished using a distributed doublet-based potential flow method, which was validated against wind-tunnel experimentation and a transient CFD analysis. The investigation showed that for both rotors, advancing and retreating blade effects were predicted to contribute to transient thrust amplitudes of 5–30% of the mean rotor thrust. The thrust output amplitudes of individual rotors blades were observed to be 15–45% of the mean rotor thrust, indicating that it is not uncommon for the thrust output variation of an individual rotor blade to approach the same value as the mean thrust output of the rotor itself. In addition to this, the theoretical analysis also illustrated that higher blade thrust oscillations resulted in pronounced asymmetric rotor wake structures.


2022 ◽  
Author(s):  
Bryan E. Schmidt ◽  
Wayne E. Page ◽  
Ignacio Trueba ◽  
Jeffrey A. Sutton

Author(s):  
Wenjin Mao ◽  
Hongwei Li

Purpose The purpose of this study is to provide a non-iterative linear method to solve the power flow equations of alternating current (AC) power grid. Traditional iterative power flow calculation is limited in speed and reliability, and it is unsuitable for the real-time and online applications of the modern distribution power system (DPS). Thus, it would be of great significance if a fast and flexible linear power flow (LPF) solution could be introduced particularly necessary for the robust and fast control of DPS, especially when the system consists of star and delta connections ZIP load (a constant impedance, Z, load, a constant current, I, load and a constant power, P, load) and the high penetration of distributed solar and wind power generators. Design/methodology/approach Based on the features of DPS and considering the approximate balance of three-phase DPS, several approximations corresponding to the three-phase power flow equations have been discussed and analyzed. Then, based on those approximations, two three-phase LPF models have been developed under the polar coordinates. One model has been formulated with the voltage magnitudes [referred to the voltage magniudes based linear power flow method (VMLPF)], and another model has been formulated with the logarithmic transform of voltage magnitudes [referred to the logarithmic transform of voltage based linear power flow method LGLPF)]. Findings The institute of electrical and electronic engineers (IEEE) 13-bus, 37-bus, 123-bus and an improved 615-bus unbalanced DPSs are used to test the performances of the methods considering star and delta connections ZIP load and PV buses (voltage-controlled buses). The test results validate the effectiveness and accuracy of the proposed two models. Especially when considering the PV buses and delta connection ZIP load, the proposed two models perform much well. Moreover, the results show that VMLPF performs a bit better than LGLPF. Research limitations/implications Except for the transformer with Yg–Yg connection winding can be dealt with directly, the transformers with other connections are not discussed in this proposed paper and need to be further studied. Originality/value These proposed two models can deal with ZIP load with star and delta connections as well as multi slack buses and PV buses. The single-phase, two-phase and three-phase hybrid networks can be directly included too. The proposed two models are capable of offering enough accuracy level, and they are therefore suitable for online applications that require a large number of repeated power flow calculations.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yan Hu ◽  
Yong Xu

There are many drawbacks such as clustering, background updating, inaccurate testing results, and low anti-interference performance in traditional moving target detection theory. In our study, a background subtraction method to automatically capture the basketball shooting trajectory was used to eliminate the drawbacks of the fixed-point shooting system such as cumbersome installation and time and manpower consumption. It also can improve the accuracy and efficiency of moving target detection. We also synthetically compared to common methods including the optical flow method and interframe difference method. Results showed that the background subtraction method has better accuracy with an accuracy rate over about 90% than the interframe subtraction method (88%) and the optimal flow method (85%) and presents excellent robustness with considering variable speed and nonrigid objects. Meanwhile, the automatic detection system for basketball shooting based on background subtraction is built by coupling background subtraction with detection characteristics. The system detection speed built is further accelerated, and the image denoising is improved. The trajectory error rate is about 0.3, 0.4, and 0.5 for the background subtraction method, interframe subtraction method, and optimal flow method, respectively.


2021 ◽  
Vol 11 (23) ◽  
pp. 11525
Author(s):  
Oscar Danilo Montoya ◽  
Luis Fernando Grisales-Noreña ◽  
Lázaro Alvarado-Barrios ◽  
Andres Arias-Londoño ◽  
Cesar Álvarez-Arroyo

This research addresses the problem of the optimal placement and sizing of (PV) sources in medium voltage distribution grids through the application of the recently developed Newton metaheuristic optimization algorithm (NMA). The studied problem is formulated through a mixed-integer nonlinear programming model where the binary variables regard the installation of a PV source in a particular node, and the continuous variables are associated with power generations as well as the voltage magnitudes and angles, among others. To improve the performance of the NMA, we propose the implementation of a discrete–continuous codification where the discrete component deals with the location problem and the continuous component works with the sizing problem of the PV sources. The main advantage of the NMA is that it works based on the first and second derivatives of the fitness function considering an evolution formula that contains its current solution (xit) and the best current solution (xbest), where the former one allows location exploitation and the latter allows the global exploration of the solution space. To evaluate the fitness function and its derivatives, the successive approximation power flow method was implemented, which became the proposed solution strategy in a master–slave optimizer, where the master stage is governed by the NMA and the slave stage corresponds to the power flow method. Numerical results in the IEEE 34- and IEEE 85-bus systems show the effectiveness of the proposed optimization approach to minimize the total annual operative costs of the network when compared to the classical Chu and Beasley genetic algorithm and the MINLP solvers available in the general algebraic modeling system with reductions of 26.89% and 27.60% for each test feeder with respect to the benchmark cases.


2021 ◽  
Author(s):  
Cristobal R. Ramos ◽  
Jesus H. Sanchez ◽  
Luis M. Castro

2021 ◽  
Vol 9 ◽  
Author(s):  
Yuandong Li ◽  
Bing Hao ◽  
Xiaojun Li ◽  
Liguo Jin ◽  
Qing Dong ◽  
...  

The determination of overflow boundary is a prerequisite for the accurate solution of the seepage field by the finite element method. In this paper, a method for solving overflow boundary according to the maximum value of horizontal energy loss rate is proposed, which based on the analysis of the physical meaning of functional and the water head distribution of seepage field under different overflow boundaries. This method considers that the overflow boundary that makes the horizontal energy loss rate reach the maximum value is the real boundary overflow. Compared with the previous iterative computation method of overflow point and free surface, the method of solving overflow boundary based on the maximum horizontal energy loss rate does not need iteration, so the problem of non-convergence does not exist. The relative error of the overflow points is only 1.54% and 0.98% by calculating the two-dimensional model of the glycerol test and the three-dimensional model of the electric stimulation test, respectively. Compared with the overflow boundary calculated by the node virtual flow method, improved cut-off negative pressure method, initial flow method, and improved discarding element method, this method has a higher accuracy.


2021 ◽  
Vol 172 ◽  
pp. 112854
Author(s):  
Maulik Panchal ◽  
Vrushabh Lambade ◽  
Vimal Kanpariya ◽  
Harsh Patel ◽  
Paritosh Chaudhuri

Sign in / Sign up

Export Citation Format

Share Document