scholarly journals Apsidal motion and absolute parameters for five LMC eccentric eclipsing binaries

2013 ◽  
Vol 558 ◽  
pp. A51 ◽  
Author(s):  
P. Zasche ◽  
M. Wolf
2020 ◽  
Vol 642 ◽  
pp. A91
Author(s):  
A. Liakos

The present work contains light curve, spectroscopic, and asteroseismic analyses for KIC 04851217 and KIC 10686876. These systems are detached eclipsing binaries hosting a pulsating component of δ Scuti type and have been observed with the unprecedented accuracy of the Kepler space telescope. Using ground-based spectroscopic observations, the spectral types of the primary components of the systems were estimated as A6V and A5V for KIC 04851217 and KIC 10686876, respectively, with an uncertainty of one subclass. The present spectral classification, together with literature radial velocity curves, were used to model the light curves of the systems and, therefore, to calculate the absolute parameters of their components with a higher degree of certainty. The photometric data were analysed using standard eclipsing binary modeling techniques, while their residuals were further analysed using Fourier transformation techniques to extract the pulsation frequencies of their host δ Scuti stars. The oscillation modes of the independent frequencies were identified using theoretical models of δ Scuti stars. The distances of the systems were calculated using the relation between the luminosity and the pulsation period for δ Scuti stars. Here, the physical and the oscillation properties of the pulsating components of these systems are discussed and compared with others of the same type. Moreover, using all the currently known cases of δ Scuti stars in detached binaries, updated correlations between orbital and dominant pulsation periods and between log g and pulsation periods are derived. It can concluded that the proximity of the companion plays significant role in the evolution of the pulsational frequencies.


2016 ◽  
Author(s):  
A. Bulut ◽  
İ. Bulut ◽  
C. Çiçek ◽  
A. Erdem

2019 ◽  
Vol 364 (12) ◽  
Author(s):  
Evrim Kıran ◽  
Volkan Bakış ◽  
Hicran Bakış ◽  
Ömer L. Değirmenci

1984 ◽  
Vol 105 ◽  
pp. 419-420
Author(s):  
Alvaro Giménez

The study of apsidal motions in eclipsing binaries has proven to be one of the best methods to check the internal density concentrations of the stars predicted by theoretical models. During the main sequence phase, we have found a good agreement between the observed apsidal motion rates and computer-constructed stellar models provided that a realistic consideration is made of the evolution between the lower and upper borders of the main sequence (Giménez and García-Pelayo, 1982). An obvious extension of this work is a throughout study of the more evolved evolved systems beyond the TAMS where theoretical models are less accurate and empirical data from different sources are largely needed (see review paper by Zahn in this volume). A preliminary report on such a study is presented.


2020 ◽  
Vol 493 (2) ◽  
pp. 2659-2675
Author(s):  
Derya Sürgit ◽  
Ahmet Erdem ◽  
Chris A Engelbrecht ◽  
Fred Marang

ABSTRACT We present combined photometric and spectroscopic analyses of the three southern eclipsing binary stars: DQ Car, BK Ind, and V4396 Sgr. Radial velocity curves of these three systems were obtained at the South African Astronomical Observatory, and their light curves from the available data bases and surveys were used for the analysis. 75 new times of minima for these three eclipsing binaries were derived, and their ephemerides were updated. Only the O–C diagram of DQ Car indicates a cyclical variation, which was interpreted in terms of the light-time effect due to a third body in the system. Our final models describe these three systems as Algol-like binary stars with detached configurations. The masses and radii were found to be M1 = 1.86(±0.17) M⊙, R1 = 1.63(±0.06) R⊙ and M2 = 1.74(±0.17) M⊙, R2 = 1.52(±0.07) R⊙ for the primary and secondary components of DQ Car; M1 = 1.16(±0.05) M⊙, R1 = 1.33(±0.03) R⊙ and M2 = 0.98(±0.04) M⊙, R2 = 1.00(±0.03) R⊙ for BK Ind; and M1 = 3.14(±0.22) M⊙, R1 = 3.00(±0.09) R⊙ and M2 = 3.13(±0.24) M⊙, R2 = 2.40(±0.08) R⊙ for V4396 Sgr, respectively. The distances to DQ Car, BK Ind, and V4396 Sgr were derived to be 701(±50), 285(±20), and 414(±30) pc from the distance modulus formula, taking into account interstellar extinction. The evolutionary status of these three systems was also studied. It has been found that the components of DQ Car are very young stars at the age of ∼25 Myr and those of BK Ind and V4396 Sgr are evolved main-sequence stars at the ages of ∼2.69 Gyr and ∼204 Myr, respectively.


2004 ◽  
Vol 420 (2) ◽  
pp. 619-624 ◽  
Author(s):  
M. Wolf ◽  
P. Harmanec ◽  
L. Šarounová ◽  
M. Zejda ◽  
H. Božić ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document