main sequence stars
Recently Published Documents


TOTAL DOCUMENTS

1236
(FIVE YEARS 131)

H-INDEX

77
(FIVE YEARS 10)

Author(s):  
Jia Yin ◽  
Zhiwei Chen ◽  
Yong-Qiang Yao ◽  
Jian Chen ◽  
Bin Li ◽  
...  

Abstract Early-B stars, much less energetic than O stars, may create an HII region that appears as radio-quiet. We report the identification of new early-B stars associated with the radio-quiet HII region G014.645--00.606 in the M17 complex. The ratio-quiet HII region G014.645--00.606 is adjacent to three radio-quiet WISE HII region candidates \citep{2014ApJS..212....1A}. The ionizing sources of the radio-quiet HII regions are expected to later than B1V, given the sensitivity about 1-2 mJy of the MAGPIS 20 cm survey. The stars were first selected if their parallaxes of GAIA EDR3 match that of the 22 GHz H2O maser source within the same region. We used the color-magnitude diagram made from the ZTF photometric catalog to select the candidates for massive stars because the intrinsic g-r colors of massive stars change little from B-type to O-type stars. Five stars lie in the areas of the color-magnitude diagram where either reddened massive stars or evolved post-main sequence stars of lower masses are commonly found. Three of the five stars, sources 1, 2, and 3, are located at the cavities of the three IR bubbles, and extended Hα emission is detected around the three IR bubbles. We suggest that sources 1, 2, and 3 are candidates for early-B stars associated with the radio-quiet region G014.645--00.606. Particularly, source 1 is an EW type eclipsing binary with a short period of 0.825 day, while source 2 is an EA type eclipsing binary with a short period of 0.919 day. The physical parameters of the two binary systems have been derived through the PHOEBE model. Source 1 is a twin binary of two stars with Teff ≈ 23,500 K, and source 2 contains a hotter component (Teff≈20,100 K) and a cooler one (Teff≈15,500 K). The O-C values of source 1 show a trend of decline, implying that the period of source is deceasing. Source 1 is likely a contacting early-B twin binary, for which mass transfer might cause its orbit to shrink.


2022 ◽  
Vol 163 (2) ◽  
pp. 53
Author(s):  
Nicholas Saunders ◽  
Samuel K. Grunblatt ◽  
Daniel Huber ◽  
Karen A. Collins ◽  
Eric L. N. Jensen ◽  
...  

Abstract While the population of confirmed exoplanets continues to grow, the sample of confirmed transiting planets around evolved stars is still limited. We present the discovery and confirmation of a hot Jupiter orbiting TOI-2184 (TIC 176956893), a massive evolved subgiant (M ⋆ = 1.53 ± 0.12 M ⊙, R ⋆ = 2.90 ± 0.14 R ⊙) in the Transiting Exoplanet Survey Satellite (TESS) Southern Continuous Viewing Zone. The planet was flagged as a false positive by the TESS Quick-Look Pipeline due to periodic systematics introducing a spurious depth difference between even and odd transits. Using a new pipeline to remove background scattered light in TESS Full Frame Image data, we combine space-based TESS photometry, ground-based photometry, and ground-based radial velocity measurements to report a planet radius of R p = 1.017 ± 0.051 R J and mass of M p = 0.65 ± 0.16 M J . For a planet so close to its star, the mass and radius of TOI-2184b are unusually well matched to those of Jupiter. We find that the radius of TOI-2184b is smaller than theoretically predicted based on its mass and incident flux, providing a valuable new constraint on the timescale of post-main-sequence planet inflation. The discovery of TOI-2184b demonstrates the feasibility of detecting planets around faint (TESS magnitude > 12) post-main-sequence stars and suggests that many more similar systems are waiting to be detected in the TESS FFIs, whose confirmation may elucidate the final stages of planetary system evolution.


Galaxies ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Guillermo Torres ◽  
Gregory A. Feiden ◽  
Andrew Vanderburg ◽  
Jason L. Curtis

Main-sequence stars with convective envelopes often appear larger and cooler than predicted by standard models of stellar evolution for their measured masses. This is believed to be caused by stellar activity. In a recent study, accurate measurements were published for the K-type components of the 1.62-day detached eclipsing binary EPIC 219511354, showing the radii and temperatures for both stars to be affected by these discrepancies. This is a rare example of a system in which the age and chemical composition are known, by virtue of being a member of the well-studied open cluster Ruprecht 147 (age~3 Gyr, [Fe/H] = +0.10). Here, we report a detailed study of this system with nonstandard models incorporating magnetic inhibition of convection. We show that these calculations are able to reproduce the observations largely within their uncertainties, providing robust estimates of the strength of the magnetic fields on both stars: 1600 ± 130 G and 1830 ± 150 G for the primary and secondary, respectively. Empirical estimates of the magnetic field strengths based on the measured X-ray luminosity of the system are roughly consistent with these predictions, supporting this mechanism as a possible explanation for the radius and temperature discrepancies.


2021 ◽  
Vol 162 (6) ◽  
pp. 282
Author(s):  
Aidan McBride ◽  
Ryan Lingg ◽  
Marina Kounkel ◽  
Kevin Covey ◽  
Brian Hutchinson

Abstract A reliable census of pre-main-sequence stars with known ages is critical to our understanding of early stellar evolution, but historically there has been difficulty in separating such stars from the field. We present a trained neural network model, Sagitta, that relies on Gaia DR2 and 2 Micron All-Sky Survey photometry to identify pre-main-sequence stars and to derive their age estimates. Our model successfully recovers populations and stellar properties associated with known star-forming regions up to five kpc. Furthermore, it allows for a detailed look at the star-forming history of the solar neighborhood, particularly at age ranges to which we were not previously sensitive. In particular, we observe several bubbles in the distribution of stars, the most notable of which is a ring of stars associated with the Local Bubble, which may have common origins with Gould’s Belt.


2021 ◽  
Vol 921 (2) ◽  
pp. 165
Author(s):  
Tirthendu Sinha ◽  
Saurabh Sharma ◽  
Neelam Panwar ◽  
N. Matsunaga ◽  
K. Ogura ◽  
...  

2021 ◽  
Vol 55 (6) ◽  
pp. 620-624
Author(s):  
Pavel Pintr ◽  
Eva Plávalová ◽  
Vlasta Peřinová ◽  
Antonín Lukš

2021 ◽  
Vol 921 (2) ◽  
pp. 171
Author(s):  
Chengyuan Li

Abstract The detection of star-to-star chemical variations in star clusters older than 2 Gyr has changed the traditional view of star clusters as canonical examples of “simple stellar populations” into the so-called “multiple stellar populations” (MPs). Although the significance of MPs seems to correlate with cluster total mass, it seems that the presence of MPs is determined by cluster age. In this article, we use deep photometry from the Hubble Space Telescope to investigate whether the FG-type dwarfs in the ∼1.7 Gyr old cluster NGC 1846, have helium spread. By comparing the observation with the synthetic stellar populations, we estimate a helium spread of ΔY ∼ 0.01 ± 0.01 among the main-sequence stars in NGC 1846. The maximum helium spread would not exceed ΔY ∼ 0.02, depending on the adopted fraction of helium-enriched stars. To mask the color variation caused by such a helium enrichment, a nitrogen enrichment of at least Δ[N/Fe] = 0.8 dex is required, which is excluded by previous analyses of the red-giant branch in this cluster. We find that our result is consistent with the ΔY–mass relationship for Galactic globular clusters. To examine whether or not NGC 1846 harbors MPs, higher photometric accuracy is required. We conclude that under the adopted photometric quality, there is no extreme helium variation among NGC 1846 dwarfs.


2021 ◽  
Vol 921 (1) ◽  
pp. 53
Author(s):  
Ricardo López-Valdivia ◽  
Kimberly R. Sokal ◽  
Gregory N. Mace ◽  
Benjamin T. Kidder ◽  
Maryam Hussaini ◽  
...  

2021 ◽  
Vol 21 (8) ◽  
pp. 192
Author(s):  
Sunay Ibryamov ◽  
Gabriela Zidarova ◽  
Evgeni Semkov ◽  
Stoyanka Peneva

2021 ◽  
Vol 162 (4) ◽  
pp. 153
Author(s):  
Evan H. Nuñez ◽  
Matthew S. Povich ◽  
Breanna A. Binder ◽  
Leisa K. Townsley ◽  
Patrick S. Broos

Sign in / Sign up

Export Citation Format

Share Document