scholarly journals The ALMA-PILS survey: first detection of methyl isocyanide (CH3NC) in a solar-type protostar

2018 ◽  
Vol 617 ◽  
pp. A95 ◽  
Author(s):  
H. Calcutt ◽  
M. R. Fiechter ◽  
E. R. Willis ◽  
H. S. P. Müller ◽  
R. T. Garrod ◽  
...  

Context. Methyl isocyanide (CH3NC) is the isocyanide with the largest number of atoms confirmed in the interstellar medium (ISM), but it is not an abundant molecule, having only been detected towards a handful of objects. Conversely, its isomer, methyl cyanide (CH3CN), is one of the most abundant complex organic molecules detected in the ISM, with detections in a variety of low- and high-mass sources. Aims. The aims of this work are to determine the abundances of methyl isocyanide in the solar-type protostellar binary IRAS 16293–2422 and to understand the stark abundance differences observed between methyl isocyanide and methyl cyanide in the ISM. Methods. We use Atacama Large Millimeter/submillimeter Array (ALMA) observations from the Protostellar Interferometric Line Survey (PILS) to search for methyl isocyanide and compare its abundance with that of its isomer methyl cyanide. We use a new line catalogue from the Cologne Database for Molecular Spectroscopy (CDMS) to identify methyl isocyanide lines. We also model the chemistry with an updated version of the three-phase chemical kinetics model MAGICKAL, presenting the first chemical modelling of methyl isocyanide to date. Results. We detect methyl isocyanide for the first time in a solar-type protostar, IRAS 16293–2422 B, and present upper limits for its companion protostar, IRAS 16293–2422 A. Methyl isocyanide is found to be at least 20 times more abundant in source B compared to source A, with a CH3CN/CH3NC abundance ratio of 200 in IRAS 16293–2422 B and >5517 in IRAS 16293–2422 A. We also present the results of a chemical model of methyl isocyanide chemistry in both sources, and discuss the implications for methyl isocyanide formation mechanisms and the relative evolutionary stages of both sources. The chemical modelling is unable to match the observed CH3CN/CH3NC abundance ratio towards the B source at densities representative of that source. The modelling, however, is consistent with the upper limits for the A source. There are many uncertainties in the formation and destruction pathways of methyl isocyanide, and it is therefore not surprising that the initial modelling attempts do not reproduce observations. In particular, it is clear that some destruction mechanism of methyl isocyanide that does not destroy methyl cyanide is needed. Furthermore, these initial model results suggest that the final density plays a key role in setting the abundance ratio. The next steps are therefore to obtain further detections of methyl isocyanide in more objects, as well as undertaking more detailed physico-chemical modelling of sources such as IRAS16293.

2019 ◽  
Vol 632 ◽  
pp. A19 ◽  
Author(s):  
V. Taquet ◽  
E. Bianchi ◽  
C. Codella ◽  
M. V. Persson ◽  
C. Ceccarelli ◽  
...  

Methanol is a key species in astrochemistry because it is the most abundant organic molecule in the interstellar medium and is thought to be the mother molecule of many complex organic species. Estimating the deuteration of methanol around young protostars is of crucial importance because it highly depends on its formation mechanisms and the physical conditions during its moment of formation. We analyse several dozen transitions from deuterated methanol isotopologues coming from various existing observational datasets obtained with the IRAM-PdBI and ALMA sub-millimeter interferometers to estimate the methanol deuteration surrounding three low-mass protostars on Solar System scales. A population diagram analysis allows us to derive a [CH2DOH]/[CH3OH] abundance ratio of 3–6% and a [CH3OD]/[CH3OH] ratio of 0.4–1.6% in the warm inner (≤100–200 AU) protostellar regions. These values are typically ten times lower than those derived with previous single-dish observations towards these sources, but they are one to two orders of magnitude higher than the methanol deuteration measured in massive hot cores. Dust temperature maps obtained from Herschel and Planck observations show that massive hot cores are located in warmer molecular clouds than low-mass sources, with temperature differences of ~10 K. The comparison of our measured values with the predictions of the gas-grain astrochemical model GRAINOBLE shows that such a temperature difference is sufficient to explain the different deuteration observed in low- to high-mass sources. This suggests that the physical conditions of the molecular cloud at the origin of the protostars mostly govern the present-day observed deuteration of methanol and therefore of more complex organic molecules. Finally, the methanol deuteration measured towards young solar-type protostars on Solar System scales seems to be higher by a factor of ~5 than the upper limit in methanol deuteration estimated in comet Hale-Bopp. If this result is confirmed by subsequent observations of other comets, it would imply that an important reprocessing of the organic material likely occurred in the solar nebula during the formation of the Solar System.


2005 ◽  
Vol 13 ◽  
pp. 479-481
Author(s):  
Klaus Pontoppidan ◽  
Ewine van Dishoeck ◽  
Emmanuel Dartois ◽  
Wing-Fai Thi

AbstractWe present 3-5 µm VLT-ISAAC spectroscopy showing the presence of methanol ices in edge-on disks of young embedded stars. Examples include the disks of L1489 IRS in Taurus and CRBR 2422.8-3423 in Ophiuchus, the last of which has the highest column density of solid CO known toward a YSO. Several additional low-mass sources in the Serpens and Chameleon molecular clouds exhibit abundant solid methanol although it is not clear if the ice is associated with a disk or with the envelope. These are the first detections of solid methanol in the disks and circumstellar environments of embedded young low-mass stars providing evidence that complex molecular species previously observed only in the solid state toward high-mass star forming regions are also present near solar-type young stars. The constraints on the formation mechanisms of methanol and the chemical evolution of ices as the material is incorporated into circumstellar disks are discussed.


2018 ◽  
Vol 617 ◽  
pp. A14 ◽  
Author(s):  
S. Paron ◽  
M. B. Areal ◽  
M. E. Ortega

Aims. Estimating molecular abundances ratios from directly measuring the emission of the molecules toward a variety of interstellar environments is indeed very useful to advance our understanding of the chemical evolution of the Galaxy, and hence of the physical processes related to the chemistry. It is necessary to increase the sample of molecular clouds, located at different distances, in which the behavior of molecular abundance ratios, such as the 13CO/C18O ratio, is studied in detail. Methods. We selected the well-studied high-mass star-forming region G29.96−0.02, located at a distance of about 6.2 kpc, which is an ideal laboratory to perform this type of study. To study the 13CO/C18O abundance ratio (X13∕18) toward this region, we used 12CO J = 3–2 data obtained from the CO High-Resolution Survey, 13CO and C18O J = 3–2 data from the 13CO/C18O (J = 3–2) Heterodyne Inner Milky Way Plane Survey, and 13CO and C18O J = 2–1 data retrieved from the CDS database that were observed with the IRAM 30 m telescope. The distribution of column densities and X13∕18 throughout the extension of the analyzed molecular cloud was studied based on local thermal equilibrium (LTE) and non-LTE methods. Results. Values of X13∕18 between 1.5 and 10.5, with an average of about 5, were found throughout the studied region, showing that in addition to the dependency of X13∕18 and the galactocentric distance, the local physical conditions may strongly affect this abundance ratio. We found that correlating the X13∕18 map with the location of the ionized gas and dark clouds allows us to suggest in which regions the far-UV radiation stalls in dense gaseous components, and in which regions it escapes and selectively photodissociates the C18O isotope. The non-LTE analysis shows that the molecular gas has very different physical conditions, not only spatially throughout the cloud, but also along the line of sight. This type of study may represent a tool for indirectly estimating (from molecular line observations) the degree of photodissociation in molecular clouds, which is indeed useful to study the chemistry in the interstellar medium.


2019 ◽  
Vol 627 ◽  
pp. L4 ◽  
Author(s):  
J. Cernicharo ◽  
L. Velilla-Prieto ◽  
M. Agúndez ◽  
J. R. Pardo ◽  
J. P. Fonfría ◽  
...  

We report on the detection of calcium isocyanide, CaNC, in the carbon-rich evolved star IRC+10216. We derived a column density for this species of (2 ± 0.5) × 1011 cm−2. Based on the observed line profiles and the modelling of its emission through the envelope, the molecule has to be produced in the intermediate and outer layers of the circumstellar envelope where other metal-isocyanides have previously been found in this source. The abundance ratio of CaNC relative to MgNC and FeCN is ≃1/60 and ≃1, respectively. We searched for the species CaF, CaCl, CaC, CaCCH, and CaCH3 for which accurate frequency predictions are available. Only upper limits have been obtained for these molecules.


2020 ◽  
Vol 494 (3) ◽  
pp. 4266-4278 ◽  
Author(s):  
G W Roberts-Borsani

ABSTRACT Mass outflow rates and loading factors are typically used to infer the quenching potential of galactic-scale outflows. However, these generally rely on observations of a single gas phase that can severely underestimate the total ejected gas mass. To address this, we use observations of high mass (≥1010 M⊙), normal star-forming galaxies at z ∼ 0 from the MaNGA, xCOLD GASS, xGASS, and ALFALFA surveys and a stacking of Na d, Hα, CO(1–0), and H i 21 cm tracers with the aim of placing constraints on an average, total mass outflow rate, and loading factor. We find detections of outflows in both neutral and ionized gas tracers, with no detections in stacks of molecular or atomic gas emission. Modelling of the outflow components reveals velocities of |vNa d| = 131 km s−1 and |vHα| = 439 km s−1 and outflow rates of $\dot{M}_{\rm {Na\,\small{D}}}$ = 7.55 M⊙ yr−1 and $\dot{M}_{\text{H}\alpha }$ = 0.10 M⊙ yr−1 for neutral and ionized gas, respectively. Assuming a molecular/atomic outflow velocity of 200 km s−1, we derive upper limits of $\dot{M}_{\text{CO}}\lt 19.43$ M⊙ yr−1 and $\dot{M}_{\rm {H\,\small {I}}}\lt $ 26.72 M⊙ yr−1 for the molecular and atomic gas, respectively. Combining the detections and upper limits, we find average total outflow rates of $\dot{M}_{\text{tot}}\lesssim$27 M⊙ yr−1 and a loading factor of ηtot ≲ 6.39, with molecular gas likely contributing ≲72 per cent of the total mass outflow rate, and neutral and ionized gas contributing ∼28 and <1 per cent, respectively. Our results suggest that, to first order, a degree of quenching via ejective feedback could occur in normal galaxies when considering all gas phases, even in the absence of an active galactic nucleus.


1940 ◽  
Vol 8 (8) ◽  
pp. 635-636 ◽  
Author(s):  
Raymond H. Ewell ◽  
James F. Bourland

Sign in / Sign up

Export Citation Format

Share Document