galactocentric distance
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 41)

H-INDEX

12
(FIVE YEARS 7)

2021 ◽  
Vol 922 (2) ◽  
pp. 206
Author(s):  
Takashi Shimonishi ◽  
Natsuko Izumi ◽  
Kenji Furuya ◽  
Chikako Yasui

Abstract Interstellar chemistry in low-metallicity environments is crucial to understand chemical processes in the past metal-poor universe. Recent studies of interstellar molecules in nearby low-metallicity galaxies have suggested that metallicity has a significant effect on the chemistry of star-forming cores. Here we report the first detection of a hot molecular core in the extreme outer Galaxy, which is an excellent laboratory to study star formation and the interstellar medium in a Galactic low-metallicity environment. The target star-forming region, WB 89–789, is located at a galactocentric distance of 19 kpc. Our Atacama Large Millimeter/submillimeter Array observations in 241–246, 256–261, 337–341, and 349–353 GHz have detected a variety of carbon-, oxygen-, nitrogen-, sulfur-, and silicon-bearing species, including complex organic molecules (COMs) containing up to nine atoms, toward a warm (>100 K) and compact (<0.03 pc) region associated with a protostar (∼8 × 103 L ☉). Deuterated species such as HDO, HDCO, D2CO, and CH2DOH are also detected. A comparison of fractional abundances of COMs relative to CH3OH between the outer Galactic hot core and an inner Galactic counterpart shows a remarkable similarity. On the other hand, the molecular abundances in the present source do not resemble those of low-metallicity hot cores in the Large Magellanic Cloud. The results suggest that great molecular complexity exists even in the primordial environment of the extreme outer Galaxy. The detection of another embedded protostar associated with high-velocity SiO outflows is also reported.


2021 ◽  
Vol 922 (2) ◽  
pp. 106
Author(s):  
J. J. Bernal ◽  
C. D. Sephus ◽  
L. M. Ziurys

Abstract The Galactic Habitable Zone (GHZ) is a region believed hospitable for life. To further constrain the GHZ, observations have been conducted of the J = 2 → 1 transitions of methanol (CH3OH) at 97 GHz, toward 20 molecular clouds located in the outer Galaxy (R GC = 12.9–23.5 kpc), using the 12 m telescope of the Arizona Radio Observatory. Methanol was detected in 19 out of 20 observed clouds, including sources as far as R GC = 23.5 kpc. Identification was secured by the measurement of multiple asymmetry and torsional components in the J = 2 → 1 transition, which were resolved in the narrow line profiles observed (ΔV 1/2 ∼ 1–3 km s−1). From a radiative transfer analysis, column densities for these clouds of N tot = 0.1–1.5 × 1013 cm−2 were derived, corresponding to fractional abundances, relative to H2, of f (CH3OH) ∼ 0.2–4.9 × 10−9. The analysis also indicates that these clouds are cold (T K ∼ 10–25 K) and dense (n(H2) ∼ 106 cm−3), as found from previous H2CO observations. The methanol abundances in the outer Galaxy are comparable to those observed in colder molecular clouds in the solar neighborhood. The abundance of CH3OH therefore does not appear to decrease significantly with distances from the Galactic Center, even at R GC ∼ 20–23 kpc. Furthermore, the production of methanol is apparently not affected by the decline in metallicity with galactocentric distance. These observations suggest that organic chemistry is prevalent in the outer Galaxy, and methanol and other organic molecules may serve to assess the GHZ.


2021 ◽  
Vol 257 (2) ◽  
pp. 39
Author(s):  
J. L. Chen ◽  
J. S. Zhang ◽  
C. Henkel ◽  
Y. T. Yan ◽  
H. Z. Yu ◽  
...  

Abstract Our aim is to measure the interstellar 14N/15N ratio across the Galaxy, to establish a standard data set on interstellar ammonia isotope ratios, and to provide new constraints on the Galactic chemical evolution. The (J, K) = (1, 1), (2, 2), and (3, 3) lines of 14NH3 and 15NH3 were observed with the Shanghai Tianma 65 m radio telescope (TMRT) and the Effelsberg 100 m telescope toward a large sample of 210 sources. One hundred fourty-one of these sources were detected by the TMRT in 14NH3. Eight of them were also detected in 15NH3. For 10 of the 36 sources with strong NH3 emission, the Effelsberg 100 m telescope successfully detected their 15NH3(1, 1) lines, including 3 sources (G081.7522, W51D, and Orion-KL) with detections by the TMRT telescope. Thus, a total of 15 sources are detected in both the 14NH3 and 15NH3 lines. Line and physical parameters for these 15 sources are derived, including optical depths, rotation and kinetic temperatures, and total column densities. 14N/15N isotope ratios were determined from the 14NH3/15NH3 abundance ratios. The isotope ratios obtained from both telescopes agree for a given source within the uncertainties, and no dependence on heliocentric distance and kinetic temperature is seen. 14N/15N ratios tend to increase with galactocentric distance, confirming a radial nitrogen isotope gradient. This is consistent with results from recent Galactic chemical model calculations, including the impact of superasymptotic giant branch stars and novae.


2021 ◽  
Author(s):  
K.J. Lee ◽  
Heng Xu ◽  
J.R. Niu ◽  
P. Chen ◽  
Weiwei Zhu ◽  
...  

Abstract Fast radio bursts (FRBs) are highly dispersed radio bursts prevailing in the universe. The recent detection of FRB~200428 from a Galactic magnetar suggested that at least some FRBs originate from magnetars, but it is unclear whether the majority of cosmological FRBs, especially the actively repeating ones, are produced from the magnetar channel. Here we report the detection of 1863 polarised bursts from the repeating source FRB~20201124A during a dedicated radio observational campaign of Five-hundred-meter Aperture Spherical radio Telescope (FAST). The large sample of radio bursts detected in 88 hr over 54 days indicate a significant, irregular, short-time variation of the Faraday rotation measure (RM) of the source during the first 36 days, followed by a constant RM during the later 18 days. Significant circular polarisation up to 75\% was observed in a good fraction of bursts. Evidence suggests that some low-level circular polarisation originates from the conversion from linear polarisation during the propagation of the radio waves, but an intrinsic radiation mechanism is required to produce the higher degree of circular polarisation. All of these features provide evidence for a more complicated, dynamically evolving, magnetised immediate environment around this FRB source. Its host galaxy was previously known. Our optical observations reveal that it is a Milky-Way-sized, metal-rich, barred-spiral galaxy at redshift z=0.09795+-0.00003, with the FRB residing in a low stellar density, interarm region at an intermediate galactocentric distance, an environment not directly expected for a young magnetar formed during an extreme explosion of a massive star.


2021 ◽  
Vol 922 (1) ◽  
pp. 80
Author(s):  
Yang Yu ◽  
Hai-Feng Wang ◽  
Wen-Yuan Cui ◽  
Lin-Lin Li ◽  
Chao Liu ◽  
...  

Abstract We present an analysis of the spatial density structure for the outer disk from 8–14 kpc with the LAMOST DR5 13,534 OB-type stars and observe similar flaring on the north and south sides of the disk, implying that the flaring structure is symmetrical about the Galactic plane, for which the scale height at different Galactocentric distances is from 0.14 to 0.5 kpc. By using the average slope to characterize the flaring strength, we find that the thickness of the OB stellar disk is similar but that flaring is slightly stronger compared to the thin disk as traced by red giant branch stars, possibly implying that secular evolution is not the main contributor to the flaring but rather perturbation scenarios such as interactions with passing dwarf galaxies could be possible. When comparing the scale height of the OB stellar disk on the north and south sides with the gas disk, the former one is slightly thicker than the latter one by ≈33 and 9 pc, meaning that one could tentatively use young OB-type stars to trace the gas properties. Meanwhile, we determine that the radial scale length of the young OB stellar disk is 1.17 ± 0.05 kpc, which is shorter than that of the gas disk, confirming that the gas disk is more extended than the stellar disk. What is more, by considering the midplane displacements (Z 0) in our density model we find that almost all values of Z 0 are within 100 pc, with an increasing trend as Galactocentric distance increases.


2021 ◽  
Vol 918 (1) ◽  
pp. L8
Author(s):  
Naoki Koshimoto ◽  
David P. Bennett ◽  
Daisuke Suzuki ◽  
Ian A. Bond

Author(s):  
F La Barbera ◽  
A Vazdekis ◽  
I Ferreras ◽  
A Pasquali

Abstract Using new, homogeneous, long-slit spectroscopy in the wavelength range from ∼0.35 to $\sim 1 \, \mu$m, we study radial gradients of optical and near-infrared (NIR) IMF-sensitive features along the major axis of the bulge of M31, out to a galactocentric distance of ∼200 arcsec (∼800 pc). Based on state-of-the-art stellar population synthesis models with varying Na abundance ratio, we fit a number of spectral indices, from different chemical species (including TiO’s, Ca, and Na indices), to constrain the low-mass (≲ 0.5 M⊙) end slope (i.e. the fraction of low-mass stars) of the stellar IMF, as a function of galactocentric distance. Outside a radial distance of ∼10”, we infer an IMF similar to a Milky-Way-like distribution, while at small galactocentric distances, an IMF radial gradient is detected, with a mildly bottom-heavy IMF in the few inner arcsec. We are able to fit Na features (both NaD and $\rm NaI8190$), without requiring extremely high Na abundance ratios. $\rm [Na/Fe]$ is ∼0.4 dex for most of the bulge, rising up to ∼0.6 dex in the innermost radial bins. Our results imply an overall, luminosity-weighted, IMF and mass-to-light ratio for the M31 bulge, consistent with those for a Milky-Way-like distribution, in contrast to results obtained, in general, for most massive early-type galaxies.


2021 ◽  
Vol 502 (3) ◽  
pp. 4547-4557
Author(s):  
Jeremy J Webb ◽  
Raymond G Carlberg

ABSTRACT The currently known Galactic globular cluster population extends out to a maximum galactocentric distance of ∼145 kpc, with the peculiarity that the outermost clusters predominantly have an inward velocity. Orbit averaging finds that this configuration occurs by chance about $6{{\ \rm per\ cent}}$ of the time, suggesting that several globular clusters with positive radial velocities remain undiscovered. We evaluate the expected number of undiscovered clusters at large distances under the assumption that the cluster population has a smooth radial distribution and is in equilibrium within the Milky Way’s virial radius. By comparing the present day kinematic properties of outer clusters to random orbital configurations of the Galactic globular cluster system through orbit averaging, we estimate a likelihood of $73{{\ \rm per\ cent}}$ of there being at least one undiscovered globular cluster within the Milky Way. This estimate assumes the current population is complete out to 50 kpc, and increases to $91{{\ \rm per\ cent}}$ if the population is complete out to 150 kpc. The likelihood of there being two undiscovered clusters is between $60$ and $70{{\ \rm per\ cent}}$, with the likelihood of there being three undiscovered clusters being on the order of $50{{\ \rm per\ cent}}$. The most likely scenario is that the undiscovered clusters are moving outwards, which results in the outer cluster population being consistent with an equilibrium state. Searches for distant and possibly quite low concentration and very low metallicity globular clusters will be enabled with upcoming deep imaging surveys.


2021 ◽  
Author(s):  
Laura Colzi

One of the most important tools to investigate the chemical history of our Galaxy and our own Solar System is to measure the isotopic fractionation of chemical elements. In the present study new astronomical observations devoted to the study of hydrogen and nitrogen fractionation (D/H and 14N/15N ratios) of molecules, towards massive star-forming regions in different evolutionary phases, have been presented. Moreover, a new detailed theoretical study of carbon fractionation, 12C/13C ratios, has been done. One of the main results was the confirmation that the 14N/15N ratio increases with the galactocentric distance, as predicted by stellar nucleosynthesis Galactic chemical evolution models. This work gives new important inputs on the understanding of local chemical processes that favor the production of molecules with different isotopes in star-forming regions.


Sign in / Sign up

Export Citation Format

Share Document