scholarly journals Impact of riparian land-use patterns on Ephemeroptera community structure in river basins of the southern Western Ghats, India

Author(s):  
C. Selvakumar ◽  
K.G. Sivaramakrishnan ◽  
S. Janarthanan ◽  
M. Arumugam ◽  
M. Arunachalam
2021 ◽  
Vol 12 ◽  
Author(s):  
Henry Joseph Oduor Ogola ◽  
Ramganesh Selvarajan ◽  
Memory Tekere

Southern Afrotemperate forests are small multi-layered and highly fragmented biodiversity rich biomes that support unique flora and fauna endemism. However, little is known about the microbial community and their contribution to these ecosystems. In this study, high throughput sequencing analysis was used to investigate the soil bacterial community structure and function, and understand the effect of local topography/geomorphological formations and land use patterns on a coastal scarp forest. Soil samples were collected from three forest topography sites: upper (steeper gradients, 30–55°; open canopy cover, <30%), mid (less steep, 15–30°; continuous forest canopy, >80%), and lower (flatter gradient, <15°; open canopy cover, 20–65%), and from the adjacent sugarcane farms. Results indicated that forest soils were dominated by members of phyla Proteobacteria (mainly members of α-proteobacteria), Actinobacteria, Acidobacteria, Firmicutes, and Planctomycetes, while Actinobacteria and to a lesser extent β-proteobacteria and γ-proteobacteria dominated SC soils. The core bacterial community clustered by habitat (forest vs. sugarcane farm) and differed significantly between the forest topography sites. The Rhizobiales (genera Variibacter, Bradyrhizobium, and unclassified Rhizobiales) and Rhodospirallales (unclassified Rhodospirillum DA111) were more abundant in forest mid and lower topographies. Steeper forest topography (forest_upper) characterized by the highly leached sandy/stony acidic soils, low in organic nutrients (C and N) and plant densities correlated to significant reduction of bacterial diversity and richness, associating significantly with members of order Burkholderiales (Burkholderia-Paraburkholderia, Delftia, and Massilia) as the key indicator taxa. In contrast, changes in the total nitrogen (TN), soil organic matter (SOM), and high acidity (low pH) significantly influenced bacterial community structure in sugarcane farm soils, with genus Acidothermus (Frankiales) and uncultured Solirubrobacterales YNFP111 were the most abundant indicator taxa. Availability of soil nutrients (TN and SOM) was the strongest driver of metabolic functions related to C fixation and metabolism, N and S cycling; these processes being significantly abundant in forest than sugarcane farm soils. Overall, these results revealed that the local topographical/geomorphological gradients and sugarcane farming affect both soil characteristics and forest vegetation (canopy coverage), that indirectly drives the structure and composition of bacterial communities in scarp forest soils.


2012 ◽  
Vol 32 (10) ◽  
pp. 3118-3127 ◽  
Author(s):  
邹雨坤 ZOU Yukun ◽  
张静妮 ZHANG Jingni ◽  
陈秀蓉 CHEN Xiurong ◽  
杨殿林 YANG Dianlin ◽  
张天瑞 ZHANG Tianrui ◽  
...  

1993 ◽  
Vol 14 (1) ◽  
pp. 25-42 ◽  
Author(s):  
Jordan E. Kerber

Selecting an effective archaeological survey takes careful consideration given the interaction of several variables, such as the survey's goals, nature of the data base, and budget constraints. This article provides justification for a “siteless survey” using evidence from a project on Potowomut Neck in Rhode Island whose objective was not to locate sites but to examine the distribution and density of prehistoric remains to test an hypothesis related to land use patterns. The survey strategy, random walk, was chosen because it possessed the advantages of probabilistic testing, as well as the ease of locating sample units. The results were within the limits of statistical validity and were found unable to reject the hypothesis. “Siteless survey” may be successfully applied in similar contexts where the distribution and density of materials, as opposed to ambiguously defined sites, are sought as evidence of land use patterns, in particular, and human adaptation, in general.


2021 ◽  
Vol 13 (4) ◽  
pp. 631
Author(s):  
Kyle D. Woodward ◽  
Narcisa G. Pricope ◽  
Forrest R. Stevens ◽  
Andrea E. Gaughan ◽  
Nicholas E. Kolarik ◽  
...  

Remote sensing analyses focused on non-timber forest product (NTFP) collection and grazing are current research priorities of land systems science. However, mapping these particular land use patterns in rural heterogeneous landscapes is challenging because their potential signatures on the landscape cannot be positively identified without fine-scale land use data for validation. Using field-mapped resource areas and household survey data from participatory mapping research, we combined various Landsat-derived indices with ancillary data associated with human habitation to model the intensity of grazing and NTFP collection activities at 100-m spatial resolution. The study area is situated centrally within a transboundary southern African landscape that encompasses community-based organization (CBO) areas across three countries. We conducted four iterations of pixel-based random forest models, modifying the variable set to determine which of the covariates are most informative, using the best fit predictions to summarize and compare resource use intensity by resource type and across communities. Pixels within georeferenced, field-mapped resource areas were used as training data. All models had overall accuracies above 60% but those using proxies for human habitation were more robust, with overall accuracies above 90%. The contribution of Landsat data as utilized in our modeling framework was negligible, and further research must be conducted to extract greater value from Landsat or other optical remote sensing platforms to map these land use patterns at moderate resolution. We conclude that similar population proxy covariates should be included in future studies attempting to characterize communal resource use when traditional spectral signatures do not adequately capture resource use intensity alone. This study provides insights into modeling resource use activity when leveraging both remotely sensed data and proxies for human habitation in heterogeneous, spectrally mixed rural land areas.


Sign in / Sign up

Export Citation Format

Share Document