scholarly journals Convergence of second-order, entropy stable methods for multi-dimensional conservation laws

2020 ◽  
Vol 54 (4) ◽  
pp. 1415-1428
Author(s):  
Neelabja Chatterjee ◽  
Ulrik Skre Fjordholm

High-order accurate, entropy stable numerical methods for hyperbolic conservation laws have attracted much interest over the last decade, but only a few rigorous convergence results are available, particularly in multiple space dimensions. In this paper we show how the entropy stability of one such method, which is semi-discrete in time, yields a (weak) bound on oscillations. Under the assumption of L∞-boundedness of the approximations we use compensated compactness to prove convergence to a weak solution satisfying at least one entropy condition.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Graziano Crasta ◽  
Virginia De Cicco ◽  
Annalisa Malusa

AbstractWe introduce a family of pairings between a bounded divergence-measure vector field and a function u of bounded variation, depending on the choice of the pointwise representative of u. We prove that these pairings inherit from the standard one, introduced in [G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4) 135 1983, 293–318], [G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal. 147 1999, 2, 89–118], all the main properties and features (e.g. coarea, Leibniz, and Gauss–Green formulas). We also characterize the pairings making the corresponding functionals semicontinuous with respect to the strict convergence in \mathrm{BV}. We remark that the standard pairing in general does not share this property.


1997 ◽  
Vol 127 (5) ◽  
pp. 1103-1110
Author(s):  
Zhu Changjiang

SynopsisThis paper is an extension of papers [14–16]. Using the theory of compensated compactness, we establish the convergence of the uniformly bounded approximate solution sequence for a class of ‘weakly strictly hyperbolic’ conservation laws.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aziz Madrane ◽  
Fayssal Benkhaldoun

Abstract We present an entropy stable Discontinuous Galerkin (DG) finite element method to approximate systems of 2-dimensional symmetrizable conservation laws on unstructured grids. The scheme is constructed using a combination of entropy conservative fluxes and entropy-stable numerical dissipation operators. The method is designed to work on structured as well as on unstructured meshes. As solutions of hyperbolic conservation laws can develop discontinuities (shocks) in finite time, we include a multidimensional slope limitation step to suppress spurious oscillations in the vicinity of shocks. The numerical scheme has two steps: the first step is a finite element calculation which includes calculations of fluxes across the edges of the elements using 1-D entropy stable solver. The second step is a procedure of stabilization through a truly multi-dimensional slope limiter. We compared the Entropy Stable Scheme (ESS) versus Roe’s solvers associated with entropy corrections and Osher’s solver. The method is illustrated by computing solution of the two stationary problems: a regular shock reflection problem and a 2-D flow around a double ellipse at high Mach number.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 508 ◽  
Author(s):  
Xiaohan Cheng

This paper develops a fourth order entropy stable scheme to approximate the entropy solution of one-dimensional hyperbolic conservation laws. The scheme is constructed by employing a high order entropy conservative flux of order four in conjunction with a suitable numerical diffusion operator that based on a fourth order non-oscillatory reconstruction which satisfies the sign property. The constructed scheme possesses two features: (1) it achieves fourth order accuracy in the smooth area while keeping high resolution with sharp discontinuity transitions in the nonsmooth area; (2) it is entropy stable. Some typical numerical experiments are performed to illustrate the capability of the new entropy stable scheme.


Sign in / Sign up

Export Citation Format

Share Document