scholarly journals Pairings between bounded divergence-measure vector fields and BV functions

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Graziano Crasta ◽  
Virginia De Cicco ◽  
Annalisa Malusa

AbstractWe introduce a family of pairings between a bounded divergence-measure vector field and a function u of bounded variation, depending on the choice of the pointwise representative of u. We prove that these pairings inherit from the standard one, introduced in [G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4) 135 1983, 293–318], [G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal. 147 1999, 2, 89–118], all the main properties and features (e.g. coarea, Leibniz, and Gauss–Green formulas). We also characterize the pairings making the corresponding functionals semicontinuous with respect to the strict convergence in \mathrm{BV}. We remark that the standard pairing in general does not share this property.

1997 ◽  
Vol 127 (5) ◽  
pp. 1103-1110
Author(s):  
Zhu Changjiang

SynopsisThis paper is an extension of papers [14–16]. Using the theory of compensated compactness, we establish the convergence of the uniformly bounded approximate solution sequence for a class of ‘weakly strictly hyperbolic’ conservation laws.


2020 ◽  
Vol 54 (4) ◽  
pp. 1415-1428
Author(s):  
Neelabja Chatterjee ◽  
Ulrik Skre Fjordholm

High-order accurate, entropy stable numerical methods for hyperbolic conservation laws have attracted much interest over the last decade, but only a few rigorous convergence results are available, particularly in multiple space dimensions. In this paper we show how the entropy stability of one such method, which is semi-discrete in time, yields a (weak) bound on oscillations. Under the assumption of L∞-boundedness of the approximations we use compensated compactness to prove convergence to a weak solution satisfying at least one entropy condition.


2020 ◽  
Vol 89 (324) ◽  
pp. 1807-1842
Author(s):  
Thi-Thao-Phuong Hoang ◽  
Lili Ju ◽  
Wei Leng ◽  
Zhu Wang

Sign in / Sign up

Export Citation Format

Share Document