scholarly journals Manifolds of differentiable densities

2018 ◽  
Vol 22 ◽  
pp. 19-34 ◽  
Author(s):  
Nigel J. Newton

We develop a family of infinite-dimensional (non-parametric) manifolds of probability measures. The latter are defined on underlying Banach spaces, and have densities of class Cbk with respect to appropriate reference measures. The case k = ∞, in which the manifolds are modelled on Fréchet spaces, is included. The manifolds admit the Fisher-Rao metric and, unusually for the non-parametric setting, Amari’s α-covariant derivatives for all α ∈ ℝ. By construction, they are C∞-embedded submanifolds of particular manifolds of finite measures. The statistical manifolds are dually (α = ±1) flat, and admit mixture and exponential representations as charts. Their curvatures with respect to the α-covariant derivatives are derived. The likelihood function associated with a finite sample is a continuous function on each of the manifolds, and the α-divergences are of class C∞.

Test ◽  
2019 ◽  
Vol 29 (4) ◽  
pp. 966-988
Author(s):  
Francesco Bravo

AbstractThis paper considers estimation and inference for a class of varying coefficient models in which some of the responses and some of the covariates are missing at random and outliers are present. The paper proposes two general estimators—and a computationally attractive and asymptotically equivalent one-step version of them—that combine inverse probability weighting and robust local linear estimation. The paper also considers inference for the unknown infinite-dimensional parameter and proposes two Wald statistics that are shown to have power under a sequence of local Pitman drifts and are consistent as the drifts diverge. The results of the paper are illustrated with three examples: robust local generalized estimating equations, robust local quasi-likelihood and robust local nonlinear least squares estimation. A simulation study shows that the proposed estimators and test statistics have competitive finite sample properties, whereas two empirical examples illustrate the applicability of the proposed estimation and testing methods.


2015 ◽  
Vol 15 (03) ◽  
pp. 1550017 ◽  
Author(s):  
Abdelkarem Berkaoui

We state necessary and sufficient conditions on a set of probability measures to be the set of martingale measures for a vector valued, bounded and adapted process. In the absence of the maximality condition, we prove the existence of the smallest set of martingale measures. We apply such results to the finite sample space case.


Sign in / Sign up

Export Citation Format

Share Document