scholarly journals The W, Z scale functions kit for first passage problems of spectrally negative Lévy processes, and applications to control problems

2020 ◽  
Vol 24 ◽  
pp. 454-525 ◽  
Author(s):  
Florin Avram ◽  
Danijel Grahovac ◽  
Ceren Vardar-Acar

In the last years there appeared a great variety of identities for first passage problems of spectrally negative Lévy processes, which can all be expressed in terms of two “q-harmonic functions” (or scale functions) W and Z. The reason behind that is that there are two ways of exiting an interval, and thus two fundamental “two-sided exit” problems from an interval (TSE). Since many other problems can be reduced to TSE, researchers developed in the last years a kit of formulas expressed in terms of the “W, Z alphabet”. It is important to note – as is currently being shown – that these identities apply equally to other spectrally negative Markov processes, where however the W, Z functions are typically much harder to compute. We collect below our favorite recipes from the “W, Z kit”, drawing from various applications in mathematical finance, risk, queueing, and inventory/storage theory. A small sample of applications concerning extensions of the classic de Finetti dividend problem is offered. An interesting use of the kit is for recognizing relationships between problems involving behaviors apparently unrelated at first sight (like reflection, absorption, etc.). Another is expressing results in a standardized form, improving thus the possibility to check when a formula is already known.

2019 ◽  
Vol 56 (2) ◽  
pp. 441-457 ◽  
Author(s):  
Bo Li ◽  
Nhat Linh Vu ◽  
Xiaowen Zhou

AbstractFor spectrally negative Lévy processes, we prove several fluctuation results involving a general draw-down time, which is a downward exit time from a dynamic level that depends on the running maximum of the process. In particular, we find expressions of the Laplace transforms for the two-sided exit problems involving the draw-down time. We also find the Laplace transforms for the hitting time and creeping time over the running-maximum related draw-down level, respectively, and obtain an expression for a draw-down associated potential measure. The results are expressed in terms of scale functions for the spectrally negative Lévy processes.


2021 ◽  
Vol 58 (4) ◽  
pp. 1131-1151
Author(s):  
Florin Avram ◽  
Bin Li ◽  
Shu Li

AbstractDrawdown/regret times feature prominently in optimal stopping problems, in statistics (CUSUM procedure), and in mathematical finance (Russian options). Recently it was discovered that a first passage theory with more general drawdown times, which generalize classic ruin times, may be explicitly developed for spectrally negative Lévy processes [9, 20]. In this paper we further examine the general drawdown-related quantities in the (upward skip-free) time-homogeneous Markov process, and then in its (general) tax process by noticing the pathwise connection between general drawdown and the tax process.


2007 ◽  
Vol 44 (4) ◽  
pp. 1012-1030 ◽  
Author(s):  
Xiaowen Zhou

For a spectrally negative Lévy process X on the real line, let S denote its supremum process and let I denote its infimum process. For a > 0, let τ(a) and κ(a) denote the times when the reflected processes Ŷ := S − X and Y := X − I first exit level a, respectively; let τ−(a) and κ−(a) denote the times when X first reaches Sτ(a) and Iκ(a), respectively. The main results of this paper concern the distributions of (τ(a), Sτ(a), τ−(a), Ŷτ(a)) and of (κ(a), Iκ(a), κ−(a)). They generalize some recent results on spectrally negative Lévy processes. Our approach relies on results concerning the solution to the two-sided exit problem for X. Such an approach is also adapted to study the excursions for the reflected processes. More explicit expressions are obtained when X is either a Brownian motion with drift or a completely asymmetric stable process.


Sign in / Sign up

Export Citation Format

Share Document