exit problems
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 2)

2020 ◽  
Vol 52 (4) ◽  
pp. 1164-1196
Author(s):  
Wenyuan Wang ◽  
Xiaowen Zhou

AbstractDraw-down time for a stochastic process is the first passage time of a draw-down level that depends on the previous maximum of the process. In this paper we study the draw-down-related Parisian ruin problem for spectrally negative Lévy risk processes. Intuitively, a draw-down Parisian ruin occurs when the surplus process has continuously stayed below the dynamic draw-down level for a fixed amount of time. We introduce the draw-down Parisian ruin time and solve the corresponding two-sided exit problems via excursion theory. We also find an expression for the potential measure for the process killed at the draw-down Parisian time. As applications, we obtain new results for spectrally negative Lévy risk processes with dividend barrier and with Parisian ruin.


2020 ◽  
Vol 52 (2) ◽  
pp. 404-432
Author(s):  
Irmina Czarna ◽  
Adam Kaszubowski ◽  
Shu Li ◽  
Zbigniew Palmowski

AbstractIn this paper, we solve exit problems for a one-sided Markov additive process (MAP) which is exponentially killed with a bivariate killing intensity $\omega(\cdot,\cdot)$ dependent on the present level of the process and the current state of the environment. Moreover, we analyze the respective resolvents. All identities are expressed in terms of new generalizations of classical scale matrices for MAPs. We also remark on a number of applications of the obtained identities to (controlled) insurance risk processes. In particular, we show that our results can be applied to the Omega model, where bankruptcy takes place at rate $\omega(\cdot,\cdot)$ when the surplus process becomes negative. Finally, we consider Markov-modulated Brownian motion (MMBM) as a special case and present analytical and numerical results for a particular choice of piecewise intensity function $\omega(\cdot,\cdot)$ .


2020 ◽  
Vol 94 ◽  
pp. 101932 ◽  
Author(s):  
Amneet Pal Singh Bhalla ◽  
Nishant Nangia ◽  
Panagiotis Dafnakis ◽  
Giovanni Bracco ◽  
Giuliana Mattiazzo

2020 ◽  
Vol 24 ◽  
pp. 454-525 ◽  
Author(s):  
Florin Avram ◽  
Danijel Grahovac ◽  
Ceren Vardar-Acar

In the last years there appeared a great variety of identities for first passage problems of spectrally negative Lévy processes, which can all be expressed in terms of two “q-harmonic functions” (or scale functions) W and Z. The reason behind that is that there are two ways of exiting an interval, and thus two fundamental “two-sided exit” problems from an interval (TSE). Since many other problems can be reduced to TSE, researchers developed in the last years a kit of formulas expressed in terms of the “W, Z alphabet”. It is important to note – as is currently being shown – that these identities apply equally to other spectrally negative Markov processes, where however the W, Z functions are typically much harder to compute. We collect below our favorite recipes from the “W, Z kit”, drawing from various applications in mathematical finance, risk, queueing, and inventory/storage theory. A small sample of applications concerning extensions of the classic de Finetti dividend problem is offered. An interesting use of the kit is for recognizing relationships between problems involving behaviors apparently unrelated at first sight (like reflection, absorption, etc.). Another is expressing results in a standardized form, improving thus the possibility to check when a formula is already known.


2019 ◽  
Vol 56 (2) ◽  
pp. 441-457 ◽  
Author(s):  
Bo Li ◽  
Nhat Linh Vu ◽  
Xiaowen Zhou

AbstractFor spectrally negative Lévy processes, we prove several fluctuation results involving a general draw-down time, which is a downward exit time from a dynamic level that depends on the running maximum of the process. In particular, we find expressions of the Laplace transforms for the two-sided exit problems involving the draw-down time. We also find the Laplace transforms for the hitting time and creeping time over the running-maximum related draw-down level, respectively, and obtain an expression for a draw-down associated potential measure. The results are expressed in terms of scale functions for the spectrally negative Lévy processes.


Sign in / Sign up

Export Citation Format

Share Document