scholarly journals Open capacitated arc routing problem by hybridized ant colony algorithm

Author(s):  
Bilal Kanso ◽  
Ali Kansou ◽  
Adnan Yassine

The Open Capacitated Arc Routing Problem OCARP is a well-known NP-hard real-world combinatorial optimization problem. It consists of determining optimal routes for vehicles in a given service area at a minimal cost distance. The main real application for OCARP is the Meter Reader Routing Problem (MRRP). In MRRP problem, each worker in the electric (or gas) company must visit and read the electric (or gas) meters to a set of customers by starting his route from the first customer on his visit list and finishing with the last one. The worker leaves where he wants once all the associated customers have been visited. In this paper, a meta-heuristic called an Hybridized Ant Colony Algorithm (HACA) is developed and hybridized with a local search algorithm that involves the 2-opt, Swap, Relocate and Cross-exchange moves to solve OCARP problem. Computational results conducted on five different sets of OCARP-instances showed that our proposed algorithm HACA has reached good and competitive results on  benchmark instances for the problem.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Guilherme V. Batista ◽  
Cassius T. Scarpin ◽  
José E. Pécora ◽  
Angel Ruiz

This paper describes a variant of the Periodic Capacitated Arc Routing Problem for inspections in a railroad network. Inspections are performed by vehicles over a time horizon on which some stretches need evaluation more frequently than others due to its use. Each car can evaluate one stretch per day without being attached to a depot; at each day, the shift may start and end at different locations. This characterizes the problem as the Periodic Capacitated Arc Routing Problem with Continuous Moves in which firstly the delays on attendances are minimized and, second, the displacement costs. We present a mathematical model and an Ant Colony Optimization algorithm to solve the problem. The use of a local search procedure and some principles of Granular Tabu Search is crucial for the algorithm’s performance. The numerical results are promising, especially for critical situations where the arcs’ needs are close to the total vehicles’ capacity.


Sign in / Sign up

Export Citation Format

Share Document