ant colony optimization algorithm
Recently Published Documents





2022 ◽  
Vol 22 (1) ◽  
pp. 1-18
Chen Chen ◽  
Lei Liu ◽  
Shaohua Wan ◽  
Xiaozhe Hui ◽  
Qingqi Pei

As a key use case of Industry 4.0 and the Smart City, the Internet of Vehicles (IoV) provides an efficient way for city managers to regulate the traffic flow, improve the commuting performance, reduce the transportation facility cost, alleviate the traffic jam, and so on. In fact, the significant development of Internet of Vehicles has boosted the emergence of a variety of Industry 4.0 applications, e.g., smart logistics, intelligent transforation, and autonomous driving. The prerequisite of deploying these applications is the design of efficient data dissemination schemes by which the interactive information could be effectively exchanged. However, in Internet of Vehicles, an efficient data scheme should adapt to the high node movement and frequent network changing. To achieve the objective, the ability to predict short-term traffic is crucial for making optimal policy in advance. In this article, we propose a novel data dissemination scheme by exploring short-term traffic prediction for Industry 4.0 applications enabled in Internet of Vehicles. First, we present a three-tier network architecture with the aim to simply network management and reduce communication overheads. To capture dynamic network changing, a deep learning network is employed by the controller in this architecture to predict short-term traffic with the availability of enormous traffic data. Based on the traffic prediction, each road segment can be assigned a weight through the built two-dimensional delay model, enabling the controller to make routing decisions in advance. With the global weight information, the controller leverages the ant colony optimization algorithm to find the optimal routing path with minimum delay. Extensive simulations are carried out to demonstrate the accuracy of the traffic prediction model and the superiority of the proposed data dissemination scheme for Industry 4.0 applications.

2022 ◽  
Vol 15 (1) ◽  
pp. 1-14
Divyashree B. V. ◽  
Amarnath R. ◽  
Naveen M. ◽  
Hemantha Kumar G.

In this paper, pectoral muscle segmentation was performed to study the presence of malignancy in the pectoral muscle region in mammograms. A combined approach involving granular computing and layering was employed to locate the pectoral muscle in mammograms. In most cases, the pectoral muscle is found to be triangular in shape and hence, the ant colony optimization algorithm is employed to accurately estimate the pectoral muscle boundary. The proposed method works with the left mediolateral oblique (MLO) view of mammograms to avoid artifacts. For the right MLO view, the method automatically mirrors the image to the left MLO view. The performance of this method was evaluated using the standard mini MIAS dataset (mammographic image analysis society). The algorithm was tested on 322 images and the overall accuracy of the system was about 97.47 %. The method is robust with respect to the view, shape, size and reduces the processing time. The approach correctly identifies images when the pectoral muscle is completely absent.

2022 ◽  
pp. 37-59
Ragab A. El-Sehiemy ◽  
Almoataz Y. Abdelaziz

Optimization has been an active area of research for several decades. As many real-world optimization problems become increasingly complex, better optimization algorithms are always needed. Recently, meta-heuristic global optimization algorithms have become a popular choice for solving complex and intricate problems, which are otherwise difficult to solve by traditional methods. This chapter reviews the recent applications of ant colony optimization (ACO) algorithm in the field of electrical power systems. Also, the progress of the ACO algorithm and its recent developments are discussed. This chapter covers the aspects like (1) basics of ACO algorithm, (2) progress of ACO algorithm, (3) classification of electrical power system applications, and (4) future of ACO for modern power systems application.

2021 ◽  
Vol 11 (23) ◽  
pp. 11480
Hongjiang Cui ◽  
Ying Guan ◽  
Wu Deng

Aiming at the problems of poor decomposition quality and the extraction effect of a weak signal with strong noise by empirical mode decomposition (EMD), a novel fault diagnosis method based on cascaded adaptive second-order tristable stochastic resonance (CASTSR) and EMD is proposed in this paper. In the proposed method, low-frequency interference components are filtered by using high-pass filtering, and the restriction conditions of stochastic resonance theory are solved by using an ordinary variable-scale method. Then, a chaotic ant colony optimization algorithm with a global optimization ability is employed to adaptively adjust the parameters of the second-order tristable stochastic resonance system to obtain the optimal stochastic resonance, and noise reduction pretreatment technology based on CASTSR is developed to enhance the weak signal characteristics of low frequency. Next, the EMD is employed to decompose the denoising signal and extract the characteristic frequency from the intrinsic mode function (IMF), so as to realize the fault diagnosis of rolling bearings. Finally, the numerical simulation signal and actual bearing fault data are selected to prove the validity of the proposed method. The experiment results indicate that the proposed fault diagnosis method can enhance the decomposition quality of the EMD, effectively extract features of weak signals, and improve the accuracy of fault diagnosis. Therefore, the proposed fault diagnosis method is an effective fault diagnosis method for rotating machinery.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Wei Tan ◽  
Yongjiang Hu ◽  
Yuefei Zhao ◽  
Wenguang Li ◽  
Yongke Li ◽  

With the development of modern science and technology, the field of UAV has also entered the era of high-tech exploration. Among them, the task planning, allocation, path exploration, and algorithm optimization of heterogeneous multi UAV technology are our main concerns. Based on the above situation, this paper proposes a heterogeneous multi UAV task planning technology based on ant colony algorithm powered BP neural network. The planning, research, and design are mainly carried out according to the actual situation of the UAV flight test, and the mathematical programming model is established according to the UAV load degree and maximum flight distance as constraints. This paper focuses on the contribution of the ant colony optimization algorithm to benefit maximization and task minimization. The experimental results show that the BP neural network optimized by the ant colony algorithm can improve the number of iterations and training time. Compared with some comparative algorithms, its performance is better.

2021 ◽  
Vol 2129 (1) ◽  
pp. 012026
Xuan-Shi Yao ◽  
Yun Ou ◽  
Kai-Qing Zhou

Abstract To solve the premature issue of TSP solving using the ant colony optimization algorithm (ACO), this paper proposes an improved ACO using particle swarm optimization (PSO) to solve the classic traveling salesman problem (TSP). The algorithm’s strategy includes three stages: firstly, establishing a mathematical model according to the optimization objective, and then solving the optimal path obtained by the particle swarm optimization algorithm. Finally, the pheromone concentration of this path in the ant colony mathematical model is enhanced according to the particle swarm optimization algorithm’s optimal path. A classic TSP case is used to compare the PSO and ACO. The results show that the proposed improved algorithm has a faster convergence speed and can converge to the optimal global solution, and its performance is better than that of ACO and PSO.

Sign in / Sign up

Export Citation Format

Share Document