scholarly journals Lewis Acid Catalyzed Carbonyl–Olefin Metathesis

Synlett ◽  
2017 ◽  
Vol 28 (13) ◽  
pp. 1501-1509 ◽  
Author(s):  
Corinna Schindler ◽  
Jacob Ludwig

Olefin–olefin metathesis has led to important advances in diverse fields of research, including synthetic chemistry, materials science, and chemical biology. The corresponding carbonyl–olefin metathesis also enables direct carbon–carbon bond formation from readily available precursors, however, currently available synthetic procedures are significantly less advanced. This Synpacts article provides an overview of recent achievements in the field of Lewis acid mediated and Lewis acid catalyzed carbonyl–olefin metathesis reactions.1 Lewis Acid Mediated Carbonyl–Olefin Metathesis2 Lewis Acid Catalyzed Carbonyl–Olefin Metathesis

2018 ◽  
Author(s):  
Haley Albright ◽  
Paul S. Riehl ◽  
Christopher C. McAtee ◽  
Jolene P. Reid ◽  
Jacob R. Ludwig ◽  
...  

<div>Catalytic carbonyl-olefin metathesis reactions have recently been developed as a powerful tool for carbon-carbon bond</div><div>formation. However, currently available synthetic protocols rely exclusively on aryl ketone substrates while the corresponding aliphatic analogs remain elusive. We herein report the development of Lewis acid-catalyzed carbonyl-olefin ring-closing metathesis reactions for aliphatic ketones. Mechanistic investigations are consistent with a distinct mode of activation relying on the in situ formation of a homobimetallic singly-bridged iron(III)-dimer as the active catalytic species. These “superelectrophiles” function as more powerful Lewis acid catalysts that form upon association of individual iron(III)-monomers. While this mode of Lewis acid activation has previously been postulated to exist, it has not yet been applied in a catalytic setting. The insights presented are expected to enable further advancement in Lewis acid catalysis by building upon the activation principle of “superelectrophiles” and broaden the current scope of catalytic carbonyl-olefin metathesis reactions.</div>


Author(s):  
Haley Albright ◽  
Paul S. Riehl ◽  
Christopher C. McAtee ◽  
Jolene P. Reid ◽  
Jacob R. Ludwig ◽  
...  

<div>Catalytic carbonyl-olefin metathesis reactions have recently been developed as a powerful tool for carbon-carbon bond</div><div>formation. However, currently available synthetic protocols rely exclusively on aryl ketone substrates while the corresponding aliphatic analogs remain elusive. We herein report the development of Lewis acid-catalyzed carbonyl-olefin ring-closing metathesis reactions for aliphatic ketones. Mechanistic investigations are consistent with a distinct mode of activation relying on the in situ formation of a homobimetallic singly-bridged iron(III)-dimer as the active catalytic species. These “superelectrophiles” function as more powerful Lewis acid catalysts that form upon association of individual iron(III)-monomers. While this mode of Lewis acid activation has previously been postulated to exist, it has not yet been applied in a catalytic setting. The insights presented are expected to enable further advancement in Lewis acid catalysis by building upon the activation principle of “superelectrophiles” and broaden the current scope of catalytic carbonyl-olefin metathesis reactions.</div>


1981 ◽  
Vol 22 (37) ◽  
pp. 3633-3636 ◽  
Author(s):  
Toshikazu Hirao ◽  
Shuichiro Kohno ◽  
Jun Enda ◽  
Yoshiki Ohshiro ◽  
Toshio Agawa

Tetrahedron ◽  
2016 ◽  
Vol 72 (27-28) ◽  
pp. 3905-3916 ◽  
Author(s):  
Dennis Wiedenhoeft ◽  
Adam R. Benoit ◽  
Yibiao Wu ◽  
Jacob D. Porter ◽  
Elisia Meyle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document