bond formation
Recently Published Documents





2022 ◽  
Vol 152 ◽  
pp. 106675
Rui Liang ◽  
Qing Liu ◽  
Dongshuai Hou ◽  
Zongjin Li ◽  
Guoxing Sun

2022 ◽  
Vol 0 (0) ◽  
Rajesh Kumar ◽  
Jyotirmoy Maity ◽  
Divya Mathur ◽  
Abhishek Verma ◽  
Neha Rana ◽  

Abstract Modified nucleosides are the core precursors for the synthesis of artificial nucleic acids, and are important in the field of synthetic and medicinal chemistry. In order to synthesize various triazolo-compounds, copper and ruthenium catalysed azide–alkyne 1,3-dipolar cycloaddition reactions also known as click reaction have emerged as a facile and efficient tool due to its simplicity and convenient conditions. Introduction of a triazole ring in nucleosides enhances their therapeutic value and various photophysical properties. This review primarily focuses on the plethora of synthetic methodologies being employed to synthesize sugar modified triazolyl nucleosides, their therapeutic importance and various other applications.

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Chitralekha Nahar ◽  
Pavan Kumar Gurrala

Purpose The thermal behavior at the interfaces (of the deposited strands) during fused filament fabrication (FFF) technique strongly influences bond formation and it is a time- and temperature-dependent process. The processing parameters affect the thermal behavior at the interfaces and the purpose of the paper is to simulate using temperature-dependent (nonlinear) thermal properties rather than constant properties. Design/methodology/approach Nonlinear temperature-dependent thermal properties are used to simulate the FFF process in a simulation software. The finite-element model is first established by comparing the simulation results with that of analytical and experimental results of acrylonitrile butadiene styrene and polylactic acid. Strand temperature and time duration to reach critical sintering temperature for the bond formation are estimated for one of the deposition sequences. Findings Temperatures are estimated at an interface and are then compared with the experimental results, which shows a close match. The results of the average time duration (time to reach the critical sintering temperature) of strands with the defined deposition sequences show that the first interface has the highest average time duration. Varying processing parameters show that higher temperatures of the extruder and envelope along with higher extruder diameter and lower convective heat transfer coefficient will have more time available for bonding between the strands. Originality/value A novel numerical model is developed using temperature-dependent (nonlinear) thermal properties to simulate FFF processes. The model estimates the temperature evolution at the strand interfaces. It helps to evaluate the time duration to reach critical sintering temperature (temperature above which the bond formation occurs) as it cools from extrusion temperature.

2022 ◽  
Guogang Liu ◽  
Marvin Nyenhuis ◽  
Dong Meng ◽  
Nikos L. Doltsinis ◽  
Yan Li ◽  

Despite the great progress in research on chiral molecular nanocarbons containing multiple helicenes, controlling the stereoselectivity is still a major challenge, especially when attempting to increase the number of helicene moieties. Herein, a novel molecular nanocarbon imides composed of C204 skeleton and eighteen imide groups was successfully synthesized via an inside–out ring closing strategy involving repeated Suzuki–Miyaura coupling for C–C bond formation and photocyclic aromatization. Because of the presence of quad–core twelvefold [5]helicenes, there are, in theory, more than one hundred stereoisomers. However, only one pair of stereoisomers with D3 symmetry was observed. Despite the large and rigid skeleton, the (3M,3M,3M,3M)+(3P,3P,3P,3P) enantiomers were successfully separated by chiral HPLC, and the chiroptical properties were investigated by CD spectroscopy.

2022 ◽  
Hyung Yoon ◽  
Alexandra Galls ◽  
Soren D. Rozema ◽  
Scott J. Miller

2022 ◽  
Vol 13 ◽  
pp. 54-62
Huang-Hsiang Lin ◽  
Jonathan Heinze ◽  
Alexander Croy ◽  
Rafael Gutiérrez ◽  
Gianaurelio Cuniberti

Lubricants are widely used in macroscopic mechanical systems to reduce friction and wear. However, on the microscopic scale, it is not clear to what extent lubricants are beneficial. Therefore, in this study, we consider two diamond solid-state gears at the nanoscale immersed in different lubricant molecules and perform classical MD simulations to investigate the rotational transmission of motion. We find that lubricants can help to synchronize the rotational transmission between gears regardless of the molecular species and the center-of-mass distance. Moreover, the influence of the angular velocity of the driving gear is investigated and shown to be related to the bond formation process between gears.

2022 ◽  
Cynthia Melendrez ◽  
Jorge Lopez-Rosas ◽  
Camron Stokes ◽  
Tsz Cheung ◽  
Sang-Jun Lee ◽  

Bromination of high-pressure high-temperature (HPHT) nanodiamond (ND) surfaces has not been explored and can open new avenues for increased chemical reactivity and diamond lattice covalent bond formation. The large bond dissociation energy of the diamond lattice-oxygen bond is a challenge that prevents new bonds from forming and most researchers simply use oxygen-terminated ND (alcohols and acids) as a reactive species. In this work, we transformed a tertiary alcohol-rich ND surface to an amine surface with 50% surface coverage and was limited by the initial rate of bromination. We observed that alkyl-bromide moieties are highly labile on NDs and are metastable as previously found using density functional theory. The instability of the bromine terminated ND is explained by steric hindrance and poor surface energy stabilization. The strong leaving group properties of the alkyl-bromide intermediate were found to form diamond-nitrogen bonds at room temperature and without catalysts. The chemical lability of the brominated ND surface led to efficient amination with NH3•THF at 298 K, and a catalyst-free Sonogashira-type reaction with an alkyne-amine produced an 11-fold increase in amination rate. Overlapping spectroscopies under inert, temperature-dependent and open-air conditions provided unambiguous chemical assignments. Amine-terminated NDs and folic acid were conjugated using sulfo-NHS/EDC coupling reagents to form amide bonds, confirming that standard amine chemistry remains viable. This work supports that a robust pathway exists to activate a chemically inert diamond surface at room temperature, which broadens the pathways of bond formation when a reactive alkyl-bromide surface is prepared. The unique surface properties of brominated and aminated nanodiamond reported here are impactful to researchers who wish to chemically tune diamond for quantum sensing applications or as an electron source for chemical transformations.

Sign in / Sign up

Export Citation Format

Share Document