Directed ortho Metalation (DoM)-Linked Corriu–Kumada, Negishi, and Suzuki–Miyaura Cross-Coupling Protocols: A Comparative Study

Synthesis ◽  
2018 ◽  
Vol 50 (22) ◽  
pp. 4395-4412 ◽  
Author(s):  
Victor Snieckus ◽  
Claude Quesnelle

A systematic study of the widely used, titled name reaction transition-metal-catalyzed cross-coupling reactions with attention to context with the directed ortho metalation (DoM) is reported. In general, the Suzuki–Miyaura and Negishi protocols show greater scope and better yields than the Corriu–Kumada variant, although the latter qualitatively proceeds at fastest rate but has low functional group tolerance. The Negishi process is shown to be useful for substrates with nucleophile and base-sensitive functionality and it is comparable to the Suzuki–Miyaura reaction in efficiency. The link of these cross-coupling reactions to the DoM strategy lends itself to the regioselective construction of diversely substituted aromatics and heteroaromatics.

2017 ◽  
Vol 46 (3) ◽  
pp. 586-602 ◽  
Author(s):  
Kai Zhao ◽  
Liang Shen ◽  
Zhi-Liang Shen ◽  
Teck-Peng Loh

This review highlights the versatility and significance of transition metal-catalyzed cross-coupling reactions employing mild and unique organoindium reagents with exceptional functional group compatibility and sometimes remarkable chemo- and stereoselectivities.


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


2006 ◽  
Vol 71 (7) ◽  
pp. 2802-2810 ◽  
Author(s):  
Susana López ◽  
Francisco Fernández-Trillo ◽  
Pilar Midón ◽  
Luis Castedo ◽  
Carlos Saá

Sign in / Sign up

Export Citation Format

Share Document