Polynomial expansion for the axially symmetric Boltzmann equation and relation between matrix elements of collision integral

2001 ◽  
Author(s):  
A. Ya. Ender
2017 ◽  
Vol 62 (8) ◽  
pp. 1148-1155 ◽  
Author(s):  
I. A. Ender ◽  
L. A. Bakaleinikov ◽  
E. Yu. Flegontova ◽  
A. B. Gerasimenko

2017 ◽  
Vol 62 (9) ◽  
pp. 1307-1312 ◽  
Author(s):  
I. A. Ender ◽  
L. A. Bakaleinikov ◽  
E. Yu. Flegontova ◽  
A. B. Gerasimenko

2014 ◽  
Vol 59 (6) ◽  
pp. 796-807
Author(s):  
L. A. Bakaleinikov ◽  
E. Yu. Flegontova ◽  
A. Ya. Ender ◽  
I. A. Ender

2011 ◽  
Vol 56 (4) ◽  
pp. 452-463 ◽  
Author(s):  
A. Ya. Ender ◽  
I. A. Ender ◽  
L. A. Bakaleinikov ◽  
E. Yu. Flegontova

1978 ◽  
Vol 12 (5) ◽  
pp. 749-757
Author(s):  
I. N. Kolyshkin ◽  
A. Ya. �nder ◽  
I. A. �nder

Author(s):  
Ilya Karlin ◽  
Pietro Asinari ◽  
Sauro Succi

The lattice Boltzmann equation was introduced about 20 years ago as a new paradigm for computational fluid dynamics. In this paper, we revisit the main formulation of the lattice Boltzmann collision integral (matrix model) and introduce a new two-parametric family of collision operators, which permits us to combine enhanced stability and accuracy of matrix models with the outstanding simplicity of the most popular single-relaxation time schemes. The option of the revised lattice Boltzmann equation is demonstrated through numerical simulations of a three-dimensional lid-driven cavity.


Sign in / Sign up

Export Citation Format

Share Document