accurate solution
Recently Published Documents


TOTAL DOCUMENTS

703
(FIVE YEARS 197)

H-INDEX

40
(FIVE YEARS 6)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 244
Author(s):  
Ruixia Yan ◽  
Liangui Peng ◽  
Yanxi Xie ◽  
Xiaoli Wang

In multi-strategy games, the increase in the number of strategies makes it difficult to make a solution. To maintain the competition advantage and obtain maximal profits, one side of the game hopes to predict the opponent’s behavior. Building a model to predict an opponent’s behavior is helpful. In this paper, we propose a rough set-game theory model (RS-GT) considering uncertain information and the opponent’s decision rules. The uncertainty of strategies is obtained based on the rough set method, and an accurate solution is obtained based on game theory from the rough set-game theory model. The players obtain their competitors’ decision rules to predict the opponents’ behavior by mining the information from repeated games in the past. The players determine their strategy to obtain maximum profits by predicting the opponent’s actions, i.e., adopting a first-mover or second-mover strategy to build a favorable situation. The result suggests that the rough set-game theory model helps enterprises avoid unnecessary losses and allows them to obtain greater profits.


2022 ◽  
Vol 12 (2) ◽  
pp. 627
Author(s):  
Salvatore Ventre ◽  
Francesca Cau ◽  
Andrea Chiariello ◽  
Gaspare Giovinco ◽  
Antonio Maffucci ◽  
...  

This paper proposes an optimal strategy to parallelize the solution of large 3D magneto-quasi-static (MQS) problems, by combining the MPI and OpenMP approaches. The studied numerical problem comes from a weak-form integral formulation of a MQS problem and is finally cast in terms of a large linear system to be solved by means of a direct method. For this purpose, two main tasks are identified: the assembly and the inversion of the matrices. The paper focuses on the optimization of the resources required for assembling the matrices, by exploiting the feature of a hybrid OpenMP–MPI approach. Specifically, the job is shared between clusters of nodes in parallel by adopting an OpenMP paradigm at the node level and a MPI one at the process level between nodes. Compared with other solutions, such as pure MPI, this hybrid parallelization optimizes the available resources, with respect to the speed, allocated memory, and the communication between nodes. These advantages are clearly observed in the case studies analyzed in this paper, coming from the study of large plasma fusion machines, such as the fusion reactor ITER. Indeed, the MQS problems associated with such applications are characterized by a huge computational cost that requires parallel computing approaches.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 118
Author(s):  
Sergei Alexandrov ◽  
Elena Lyamina

The present paper provides an accurate solution for finite plane strain bending under tension of a rigid/plastic sheet using a general material model of a strain-hardening viscoplastic material. In particular, no restriction is imposed on the dependence of the yield stress on the equivalent strain and the equivalent strain rate. A special numerical procedure is necessary to solve a non-standard ordinary differential equation resulting from the analytic treatment of the boundary value problem. A numerical example illustrates the general solution assuming that the tensile force vanishes. This numerical solution demonstrates a significant effect of the parameter that controls the loading speed on the bending moment and the through-thickness distribution of stresses.


Author(s):  
Chein-Shan Liu ◽  
Essam R. El-Zahar ◽  
Chih-Wen Chang

Abstract In the paper, we develop two novel iterative methods to determine the solution of a second-order nonlinear boundary value problem (BVP), which precisely satisfies the specified non-separable boundary conditions by taking advantage of the property of the corresponding boundary shape function (BSF). The first method based on the BSF can exactly transform the BVP to an initial value problem for the new variable with two given initial values, while two unknown terminal values are determined iteratively. By using the BSF in the second method, we derive the fractional powers exponential functions as the bases, which automatically satisfy the boundary conditions. A new splitting and linearizing technique is used to transform the nonlinear BVP into linear equations at each iteration step, which are solved to determine the expansion coefficients and then the solution is available. Upon adopting those two novel methods very accurate solution for the nonlinear BVP with non-separable boundary conditions can be found quickly. Several numerical examples are solved to assess the efficiency and accuracy of the proposed iterative algorithms, which are compared to the shooting method.


2022 ◽  
Author(s):  
Tahmina Zebin ◽  
Shahadate Rezvy, ◽  
Yuan Luo

Over the past few years, Domain Name Service (DNS) remained a prime target for hackers as it enables them to gain first entry into networks and gain access to data for exfiltration. Although the DNS over HTTPS (DoH) protocol has desirable properties for internet users such as privacy and security, it also causes a problem in that network administrators are prevented from detecting suspicious network traffic generated by malware and malicious tools. To support their efforts in maintaining a secure network, in this paper, we have implemented an explainable AI solution using a novel machine learning framework. We have used the publicly available CIRA-CIC-DoHBrw-2020 dataset for developing an accurate solution to detect and classify the DNS over HTTPS attacks. Our proposed balanced and stacked Random Forest achieved very high precision (99.91\%), recall (99.92\%) and F1 score (99.91\%) for the classification task at hand. Using explainable AI methods, we have additionally highlighted the underlying feature contributions in an attempt to provide transparent and explainable results from the model.


2022 ◽  
Author(s):  
Tahmina Zebin ◽  
Shahadate Rezvy, ◽  
Yuan Luo

Over the past few years, Domain Name Service (DNS) remained a prime target for hackers as it enables them to gain first entry into networks and gain access to data for exfiltration. Although the DNS over HTTPS (DoH) protocol has desirable properties for internet users such as privacy and security, it also causes a problem in that network administrators are prevented from detecting suspicious network traffic generated by malware and malicious tools. To support their efforts in maintaining a secure network, in this paper, we have implemented an explainable AI solution using a novel machine learning framework. We have used the publicly available CIRA-CIC-DoHBrw-2020 dataset for developing an accurate solution to detect and classify the DNS over HTTPS attacks. Our proposed balanced and stacked Random Forest achieved very high precision (99.91\%), recall (99.92\%) and F1 score (99.91\%) for the classification task at hand. Using explainable AI methods, we have additionally highlighted the underlying feature contributions in an attempt to provide transparent and explainable results from the model.


2021 ◽  
Vol 6 (4) ◽  
pp. 42-53
Author(s):  
Vladimir Karpov ◽  
◽  
Evgeny Kobelev ◽  
Aleksandr Panin ◽  
◽  
...  

Introduction: Usually, to analyze statically indeterminate rod systems, the classical displacement method and preprepared tables for two types of rods of the main system are used. A mathematically correct representation of local loads with the use of generalized functions makes it possible to find an accurate solution of the differential equation for the equilibrium of a beam exposed to an arbitrary transverse load. Purpose of the study: We aimed to obtain analytical expressions for functions of deflection, rotation angles, transverse forces, and bending moments depending on four types of local loads for beams with different boundary conditions, so as to apply accurate solutions in the displacement method. Methods: We propose an analytical form of the displacement method to analyze rod structural models. For beams exposed to different types of transverse load (uniformly distributed force, concentrated force, or a couple of forces), accurate analytical solutions were obtained for functions of deflection, bending moments, and transverse forces at different types of beam ends’ restraint. This is possible due to the fact that concentrated load and load in the form of the moment of force can be specified by using unit column functions. By transforming Mohr’s integrals, using integration by parts, we show that the system of canonical equations of the displacement method was obtained based on the Lagrange principle. Results: Based on the analysis of a statically indeterminate frame, the effectiveness of the proposed analytical method is shown as compared with the classical displacement method.


2021 ◽  
Author(s):  
Wang Qing-li ◽  
Kuan Peng ◽  
Guo Yi-Huan ◽  
Shao Yong-bo

Abstract In order to study the hysteretic behavior of concrete CFRP specimen under different influence factors, 12 specimens were designed. By consulting related literature, the research progress and main results of concrete-wrapped CFRP at home and abroad in recent years are summarized, and the accurate solution calculated by the multi-scale method and the error of the experimental value are verified by MATLAB. The non-linear vibration generated by the hysteretic performance under the action of wind excitation is introduced, which provides a certain reference for the later research.


Author(s):  
T T Li ◽  
C An ◽  
M L Duan ◽  
H Huang ◽  
W Liang

This paper establishes a fast and accurate solution of the dynamic behaviours of subsea free-spanning pipelines under four different boundary conditions, based on GITT - the generalised integral transform technique. The fluid-structure interaction model is proposed by combining a linear structural equation and a non-linear distributed wake oscillator model, which simulates the effect of external current acting on the pipeline. The eigenvalue problems for the cross-flow vibration of the free-spanning submarine pipeline conveying internal fluid for four different boundary conditions are examined. The solution method of the natural frequency based on GITT is proposed. The explicit analytical formulae for the cross-flow displacement of the pipeline free span are derived, and the mode shapes and dynamic behaviours of the pipeline free span are discussed with different boundary conditions. The methodology and results in this paper can also expand to solving even more complicated boundary-value problems.


Sign in / Sign up

Export Citation Format

Share Document