matrix elements
Recently Published Documents


TOTAL DOCUMENTS

4247
(FIVE YEARS 397)

H-INDEX

110
(FIVE YEARS 8)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Stefan Höche ◽  
Stephen Mrenna ◽  
Shay Payne ◽  
Christian Tobias Preuss ◽  
Peter Skands

We discuss and illustrate the properties of several parton-shower algorithms available in Pythia and Vincia, in the context of Higgs production via vector boson fusion (VBF). In particular, the distinctive colour topology of VBF processes allows to define observables sensitive to the coherent radiation pattern of additional jets. We study a set of such observables, using the Vincia sector-antenna shower as our main reference, and contrast it to Pythia's transverse-momentum-ordered DGLAP shower as well as Pythia's dipole-improved shower. We then investigate the robustness of these predictions as successive levels of higher-order perturbative matrix elements are incorporated, including next-to-leading-order matched and tree-level merged calculations, using Powheg Box and Sherpa respectively to generate the hard events.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
N. Ahmadiniaz ◽  
V. M. Banda Guzmán ◽  
F. Bastianelli ◽  
O. Corradini ◽  
J. P. Edwards ◽  
...  

Abstract In the first part of this series, we employed the second-order formalism and the “symbol” map to construct a particle path-integral representation of the electron propagator in a background electromagnetic field, suitable for open fermion-line calculations. Its main advantages are the avoidance of long products of Dirac matrices, and its ability to unify whole sets of Feynman diagrams related by permutation of photon legs along the fermion lines. We obtained a Bern-Kosower type master formula for the fermion propagator, dressed with N photons, in terms of the “N-photon kernel,” where this kernel appears also in “subleading” terms involving only N − 1 of the N photons.In this sequel, we focus on the application of the formalism to the calculation of on-shell amplitudes and cross sections. Universal formulas are obtained for the fully polarised matrix elements of the fermion propagator dressed with an arbitrary number of photons, as well as for the corresponding spin-averaged cross sections. A major simplification of the on-shell case is that the subleading terms drop out, but we also pinpoint other, less obvious simplifications.We use integration by parts to achieve manifest transversality of these amplitudes at the integrand level and exploit this property using the spinor helicity technique. We give a simple proof of the vanishing of the matrix element for “all +” photon helicities in the massless case, and find a novel relation between the scalar and spinor spin-averaged cross sections in the massive case. Testing the formalism on the standard linear Compton scattering process, we find that it reproduces the known results with remarkable efficiency. Further applications and generalisations are pointed out.


2022 ◽  
Vol 130 (1) ◽  
pp. 59
Author(s):  
А.М. Кузьменко ◽  
В.Ю. Иванов ◽  
А.Ю. Тихановский ◽  
А.Г. Пименов ◽  
А.М. Шуваев ◽  
...  

Experimental and theoretical study of submillimeter (terahertz) spectroscopic and magnetic properties of the rare-earth aluminum borate HoAl3(BO3)4 were performed at temperatures 3–300 K. In the transmittance spectra a number of resonance lines were detected at frequencies 2–35 cm–1 for different radiation polarizations. These modes were identified as transitions between the lower levels of the ground multiplet of the Ho3+ ion split by the crystal field, including both transitions from the ground state to the excited ones and transitions between the excited states. The established excitation conditions of the observed modes and the simulation of the spectra made it possible to separate the magnetic and electric dipole transitions and to determine the energies of the corresponding states, their symmetry, and the matrix elements of the transitions. Low-frequency lines that do not fit into the established picture of the electron states of Ho3+ were also found; these lines, apparently, correspond to the ions with the distorted by defects local symmetry of the crystal field.


2022 ◽  
Vol 258 ◽  
pp. 02007
Author(s):  
Edward Shuryak

Exclusive processes are traditionally described by perturbative hard blocks and “distribution amplitudes" (DAs), matrix elements of operators of various chiral structure and twist. One paper (with I.Zahed) calculate instanton contribution to hard blocks, which is found comparable to perturbative one in few-GeV2 Q2 region of interest. Another paper aims at comprehensive wave functions of mesons, baryons and pentaquarks. The last ones are also included as 5-quark component of the baryons. The calculation, using ’t Hooft operator, gives x-dependence and magnitude of the antiquark PDF. It explains long standing issue of strong flavor asymmetry of antiquark sea. The third paper (also with I.Zahed) is semi-review on the instanton-sphaleron processes in QCD and electroweak theories, with emphasis on their possible experimental observation via double diffractive events at LHC and RHIC. Insert your english abstract here.


2022 ◽  
Vol 130 (3) ◽  
pp. 377
Author(s):  
Н.В. СопинскиЙ ◽  
Г.П. Ольховик

The null-method in generalized ellipsometry with the use of the compensator-free “polarizer ‒ sample ‒ analyzer” scheme is considered for the case of s- and p-polarized incident light on an anisotropic system. Analytical expressions are given that connect the measured angular value — the analyzer azimuth at the detected radiation intensity minimum — with the (2x2) anisotropic Jones matrix elements. To determine the optical and geometric parameters of the studied anisotropic systems, it is proposed to use this value’s dependence on the sample orientation (azimuth). The method sensitivity is estimated. It was found that it is comparable to the sensitivity of the “polarizer‒compensator‒sample‒analyzer” scheme. A comparative analysis of this method and the known photometric method of generalized ellipsometry in the “polarizer-sample-analyzer” scheme based on measuring the dependence of the reflected light intensity on the sample azimuth at the fixed polarizer and analyzer positions is carried out. It is estimated that, to obtain the same sensitivity of these two methods, the one arc minute error in the proposed method corresponds to the 0.05% relative error in determining the energy reflection coefficient in the photometric method.


2022 ◽  
Vol 258 ◽  
pp. 04005
Author(s):  
Hee Sok Chung

We compute NRQCD long-distance matrix elements that appear in the inclusive production cross sections of P-wave heavy quarkonia in the framework of potential NRQCD. The formalism developed in this work applies to strongly coupled charmonia and bottomonia. This makes possible the determination of color-octet NRQCD long-distance matrix elements without relying on measured cross section data, which has not been possible so far. We obtain results for inclusive production cross sections of χcJ and χbJ at the LHC, which are in good agreement with measurements.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Anatoly Radyushkin ◽  
Shuai Zhao

Abstract We present results for one-loop corrections to the recently introduced “gluon condensate” PDF F(x). In particular, we give expression for the gg-part of its evolution kernel. To enforce strict compliance with the gauge invariance requirements, we have used on-shell states for external gluons, and have obtained identical results both in Feynman and light-cone gauges. No “zero mode” δ(x) terms were found for the twist-4 gluon PDF F(x). However a q2δ(x) term was found for the ξ = 0 GPD F(x, q2) at nonzero momentum transfer q. Overall, our results do not agree with the original attempt of one-loop calculations of F(x) for gluon states, which sets alarm warning for calculations that use matrix elements with virtual external gluons and for lattice renormalization procedures based on their results.


Sign in / Sign up

Export Citation Format

Share Document